Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fukushima at increased earthquake risk

Seismic risk at the Fukushima nuclear plant increased after the magnitude 9 earthquake that hit Japan last March, scientists report.
The new study, which uses data from over 6,000 earthquakes, shows the 11 March tremor caused a seismic fault close to the nuclear plant to reactivate. The results are now published in Solid Earth, an open-access journal of the European Geosciences Union (EGU).

The research suggests authorities should strengthen the security of the Fukushima Daiichi nuclear power plant to withstand large earthquakes that are likely to directly disturb the region. The power plant witnessed one of the worst nuclear disasters in history after it was damaged by the 11 March 2011 magnitude 9 earthquake and tsunami. But this tremor occurred about 160 km from the site, and a much closer one could occur in the future at Fukushima.

(From the paper.) Map of Japan’s islands indicating the area of study (black box). The purple star marks the epicentre of the 11 March earthquake and the red star the Iwaki epicentre. Fukushima Daiichi is highlighted by a red square. Black triangles indicate active volcanoes. Numbers on the side of the image represent latitude and longitude. Credit: Ping Tong, Dapeng Zhao and Dinghui Yang

¡°There are a few active faults in the nuclear power plant area, and our results show the existence of similar structural anomalies under both the Iwaki and the Fukushima Daiichi areas. Given that a large earthquake occurred in Iwaki not long ago, we think it is possible for a similarly strong earthquake to happen in Fukushima,¡± says team-leader Dapeng Zhao, geophysics professor at Japan¡¯s Tohoku University.

The 11 April 2011 magnitude 7 Iwaki earthquake was the strongest aftershock of the 11 March earthquake with an inland epicentre. It occurred 60 km southwest of the Fukushima nuclear power plant, or 200 km from the 11 March epicentre.

The research now published in EGU¡¯s Solid Earth shows that the Iwaki earthquake was triggered by fluids moving upwards from the subducting Pacific plate to the crust. The Pacific plate is moving beneath northeast Japan, which increases the temperature and pressure of the minerals in it. This leads to the removal of water from minerals, generating fluids that are less dense than the surrounding rock. These fluids move up to the upper crust and may alter seismic faults.

¡°Ascending fluids can reduce the friction of part of an active fault and so trigger it to cause a large earthquake. This, together with the stress variations caused by the 11 March event, is what set off the Iwaki tremor,¡± says Ping Tong, lead author of the paper.

The number of earthquakes in Iwaki increased greatly after the March earthquake. The movements in the Earth¡¯s crust induced by the event caused variations in the seismic pressure or stress of nearby faults. Around Iwaki, Japan¡¯s seismic network recorded over 24,000 tremors from 11 March 2011 to 27 October 2011, up from under 1,300 detected quakes in the nine years before, the scientists report.

The 6,000 of these earthquakes selected for the study were recorded by 132 seismographic stations in Japan from June 2002 to October 2011. The researchers analysed these data to take pictures of the Earth¡¯s interior, using a technique called seismic tomography.

¡°The method is a powerful tool to map out structural anomalies, such as ascending fluids, in the Earth¡¯s crust and upper mantle using seismic waves. It can be compared to a CT or CAT scan, which relies on X-rays to detect tumours or fractures inside the human body,¡± explains Zhao.

While the scientists can¡¯t predict when an earthquake in Fukushima Daiichi will occur, they state that the ascending fluids observed in the area indicate that such an event is likely to occur in the near future. They warn that more attention should be paid to the site¡¯s ability to withstand strong earthquakes, and reduce the risk of another nuclear disaster.

The scientists also note that the results may be useful for reviewing seismic safety in other nuclear facilities in Japan, such as nearby Fukushima Daini, Onagawa to the north of Fukushima, and T¨­kai to the south.

Information for editors
This research is presented in the paper ¡®Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima nuclear power plant area¡¯ to appear in the EGU open-access journal Solid Earth on 14 February 2012.

The scientific article is available online, from the publication date onwards, at

The discussion paper (not peer-reviewed) and reviewers comments is available at

The team is composed of Ping Tong (Tohoku University, Sendai, Japan [Tohoku] and Tsinghua University, Beijing, China [Tsinghua]), Dapeng Zhao (Tohoku), Dinghui Yang (Tsinghua).

The European Geosciences Union (EGU, is Europe¡¯s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 14 diverse scientific journals, which use an innovative open-access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting¡¯s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth¡¯s internal structure and atmosphere, climate change, and renewable energies.

The 2012 EGU General Assembly is taking place is Vienna, Austria from 22-27 April. For information regarding the press centre at the meeting and media registration, please check

Prof Dapeng Zhao
Department of Geophysics, Tohoku University
Sendai, Japan
Tel: +81-22-225-1950 or +81-22-795-6780
B¨¢rbara T. Ferreira
EGU Media and Communications Officer
Munich, Germany
Tel: +49-89-2180-6703

Dr. B¡§¢rbara T. Ferreira | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>