Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil suggests dinosaurs not so fierce after all

06.10.2010
A new species of dinosaur discovered in Arizona suggests dinosaurs did not spread throughout the world by overpowering other species, but by taking advantage of a natural catastrophe that wiped out their competitors.

The new dinosaur, named Sarahsaurus, was studied by an international team of scientists, including Robert R. Reisz, professor and chair of biology at the University of Toronto Mississauga, Tim Rowe, professor of paleontology at the University of Texas at Austin's Jackson School of Geosciences and Hans-Dieter Sues, curator of vertebrate paleontology at the National Museum of Natural History in Washington, D.C. The results of this research appear in the online edition of the journal Proceedings of the Royal Society B on Oct. 6.

"Until recently, we've viewed dinosaurs as very successful animals that outcompeted other species wherever they went," says Reisz. "But this study puts dinosaurs in a very different light—that they were more opportunistic creatures that moved into North America only when a mass extinction event made eco-space available to them."

Conventional wisdom says that soon after dinosaurs originated in what is now South America, they rapidly spread out to every corner of the world, overwhelming all the animals in their path. Sarahsaurus challenges that view.

One of the five great mass extinction events in Earth's history happened at the end of the Triassic Period—about 200 million years ago—wiping out many of the potential competitors to dinosaurs. Evidence from Sarahsaurus and two other early sauropodomorphs suggests that each migrated into North America in separate waves long after the extinction and that no such dinosaurs migrated there before the extinction.

Sarahsaurus lived in what is now the state of Arizona about 190 million years ago, during the Early Jurassic Period. The remains show that it was a 4.3-metre-long bipedal plant-eating animal with a long neck and small head, and weighed about 113 kilograms. Sarahsaurus is a sauropodomorph dinosaur, a relatively small predecessor to the giant sauropods, the largest land animals in history.

A team of researchers and students led by Rowe discovered an articulated skeleton of this creature during a field trip in Arizona in 1997. The team excavated the site over three years, exposed the skeleton in the Austin lab, but was stymied in the research because little of the skull was preserved.

Reisz and Sues had been working on a sauropodomorph skull from the same area in Arizona, and were ready to submit a paper describing and naming this new dinosaur, when they realized that the skull they were examining and the skeleton discovered by Rowe were the remains of the same species. Working together, the three scientists were able to put together their findings from different parts of the skeleton, and discover its evolutionary significance.

Sarahsaurus is named in honor of Sarah Butler, an Austin philanthropist and long-time supporter of the arts and sciences, who raised funds for an interactive dinosaur exhibit at the Austin Nature and Science Center. Funding for the research was provided by the Jackson School of Geosciences and the National Science Foundation.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>