Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil suggests dinosaurs not so fierce after all

06.10.2010
A new species of dinosaur discovered in Arizona suggests dinosaurs did not spread throughout the world by overpowering other species, but by taking advantage of a natural catastrophe that wiped out their competitors.

The new dinosaur, named Sarahsaurus, was studied by an international team of scientists, including Robert R. Reisz, professor and chair of biology at the University of Toronto Mississauga, Tim Rowe, professor of paleontology at the University of Texas at Austin's Jackson School of Geosciences and Hans-Dieter Sues, curator of vertebrate paleontology at the National Museum of Natural History in Washington, D.C. The results of this research appear in the online edition of the journal Proceedings of the Royal Society B on Oct. 6.

"Until recently, we've viewed dinosaurs as very successful animals that outcompeted other species wherever they went," says Reisz. "But this study puts dinosaurs in a very different light—that they were more opportunistic creatures that moved into North America only when a mass extinction event made eco-space available to them."

Conventional wisdom says that soon after dinosaurs originated in what is now South America, they rapidly spread out to every corner of the world, overwhelming all the animals in their path. Sarahsaurus challenges that view.

One of the five great mass extinction events in Earth's history happened at the end of the Triassic Period—about 200 million years ago—wiping out many of the potential competitors to dinosaurs. Evidence from Sarahsaurus and two other early sauropodomorphs suggests that each migrated into North America in separate waves long after the extinction and that no such dinosaurs migrated there before the extinction.

Sarahsaurus lived in what is now the state of Arizona about 190 million years ago, during the Early Jurassic Period. The remains show that it was a 4.3-metre-long bipedal plant-eating animal with a long neck and small head, and weighed about 113 kilograms. Sarahsaurus is a sauropodomorph dinosaur, a relatively small predecessor to the giant sauropods, the largest land animals in history.

A team of researchers and students led by Rowe discovered an articulated skeleton of this creature during a field trip in Arizona in 1997. The team excavated the site over three years, exposed the skeleton in the Austin lab, but was stymied in the research because little of the skull was preserved.

Reisz and Sues had been working on a sauropodomorph skull from the same area in Arizona, and were ready to submit a paper describing and naming this new dinosaur, when they realized that the skull they were examining and the skeleton discovered by Rowe were the remains of the same species. Working together, the three scientists were able to put together their findings from different parts of the skeleton, and discover its evolutionary significance.

Sarahsaurus is named in honor of Sarah Butler, an Austin philanthropist and long-time supporter of the arts and sciences, who raised funds for an interactive dinosaur exhibit at the Austin Nature and Science Center. Funding for the research was provided by the Jackson School of Geosciences and the National Science Foundation.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>