Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil suggests dinosaurs not so fierce after all

06.10.2010
A new species of dinosaur discovered in Arizona suggests dinosaurs did not spread throughout the world by overpowering other species, but by taking advantage of a natural catastrophe that wiped out their competitors.

The new dinosaur, named Sarahsaurus, was studied by an international team of scientists, including Robert R. Reisz, professor and chair of biology at the University of Toronto Mississauga, Tim Rowe, professor of paleontology at the University of Texas at Austin's Jackson School of Geosciences and Hans-Dieter Sues, curator of vertebrate paleontology at the National Museum of Natural History in Washington, D.C. The results of this research appear in the online edition of the journal Proceedings of the Royal Society B on Oct. 6.

"Until recently, we've viewed dinosaurs as very successful animals that outcompeted other species wherever they went," says Reisz. "But this study puts dinosaurs in a very different light—that they were more opportunistic creatures that moved into North America only when a mass extinction event made eco-space available to them."

Conventional wisdom says that soon after dinosaurs originated in what is now South America, they rapidly spread out to every corner of the world, overwhelming all the animals in their path. Sarahsaurus challenges that view.

One of the five great mass extinction events in Earth's history happened at the end of the Triassic Period—about 200 million years ago—wiping out many of the potential competitors to dinosaurs. Evidence from Sarahsaurus and two other early sauropodomorphs suggests that each migrated into North America in separate waves long after the extinction and that no such dinosaurs migrated there before the extinction.

Sarahsaurus lived in what is now the state of Arizona about 190 million years ago, during the Early Jurassic Period. The remains show that it was a 4.3-metre-long bipedal plant-eating animal with a long neck and small head, and weighed about 113 kilograms. Sarahsaurus is a sauropodomorph dinosaur, a relatively small predecessor to the giant sauropods, the largest land animals in history.

A team of researchers and students led by Rowe discovered an articulated skeleton of this creature during a field trip in Arizona in 1997. The team excavated the site over three years, exposed the skeleton in the Austin lab, but was stymied in the research because little of the skull was preserved.

Reisz and Sues had been working on a sauropodomorph skull from the same area in Arizona, and were ready to submit a paper describing and naming this new dinosaur, when they realized that the skull they were examining and the skeleton discovered by Rowe were the remains of the same species. Working together, the three scientists were able to put together their findings from different parts of the skeleton, and discover its evolutionary significance.

Sarahsaurus is named in honor of Sarah Butler, an Austin philanthropist and long-time supporter of the arts and sciences, who raised funds for an interactive dinosaur exhibit at the Austin Nature and Science Center. Funding for the research was provided by the Jackson School of Geosciences and the National Science Foundation.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>