Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil suggests dinosaurs not so fierce after all

06.10.2010
A new species of dinosaur discovered in Arizona suggests dinosaurs did not spread throughout the world by overpowering other species, but by taking advantage of a natural catastrophe that wiped out their competitors.

The new dinosaur, named Sarahsaurus, was studied by an international team of scientists, including Robert R. Reisz, professor and chair of biology at the University of Toronto Mississauga, Tim Rowe, professor of paleontology at the University of Texas at Austin's Jackson School of Geosciences and Hans-Dieter Sues, curator of vertebrate paleontology at the National Museum of Natural History in Washington, D.C. The results of this research appear in the online edition of the journal Proceedings of the Royal Society B on Oct. 6.

"Until recently, we've viewed dinosaurs as very successful animals that outcompeted other species wherever they went," says Reisz. "But this study puts dinosaurs in a very different light—that they were more opportunistic creatures that moved into North America only when a mass extinction event made eco-space available to them."

Conventional wisdom says that soon after dinosaurs originated in what is now South America, they rapidly spread out to every corner of the world, overwhelming all the animals in their path. Sarahsaurus challenges that view.

One of the five great mass extinction events in Earth's history happened at the end of the Triassic Period—about 200 million years ago—wiping out many of the potential competitors to dinosaurs. Evidence from Sarahsaurus and two other early sauropodomorphs suggests that each migrated into North America in separate waves long after the extinction and that no such dinosaurs migrated there before the extinction.

Sarahsaurus lived in what is now the state of Arizona about 190 million years ago, during the Early Jurassic Period. The remains show that it was a 4.3-metre-long bipedal plant-eating animal with a long neck and small head, and weighed about 113 kilograms. Sarahsaurus is a sauropodomorph dinosaur, a relatively small predecessor to the giant sauropods, the largest land animals in history.

A team of researchers and students led by Rowe discovered an articulated skeleton of this creature during a field trip in Arizona in 1997. The team excavated the site over three years, exposed the skeleton in the Austin lab, but was stymied in the research because little of the skull was preserved.

Reisz and Sues had been working on a sauropodomorph skull from the same area in Arizona, and were ready to submit a paper describing and naming this new dinosaur, when they realized that the skull they were examining and the skeleton discovered by Rowe were the remains of the same species. Working together, the three scientists were able to put together their findings from different parts of the skeleton, and discover its evolutionary significance.

Sarahsaurus is named in honor of Sarah Butler, an Austin philanthropist and long-time supporter of the arts and sciences, who raised funds for an interactive dinosaur exhibit at the Austin Nature and Science Center. Funding for the research was provided by the Jackson School of Geosciences and the National Science Foundation.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>