Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil finds as witnesses for fluctuations of Arctic sea ice cover during the past 30,000 years

26.10.2009
Geoscientists have succeeded in reconstructing the ice conditions in the Fram Strait, a narrow passage between eastern Greenland and Spitsbergen, during the past 30,000 years.

They used a new research method. Based on fossilized algal remains in sediment cores, researchers from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association in collaboration with colleagues from the University Plymouth, Great Britain, worked out a uniform picture of the expansion of sea ice in this area that is particularly important for worldwide climate conditions.

The publication of "Variability of sea-ice conditions in the Fram Strait over the past 30,000 years" will be issued on Sunday October 25th in the online edition of the periodical Nature Geoscience.

The examination of a sediment core from the northern Fram Strait, the only deep-water connection between the central Arctic Ocean and the Atlantic Ocean, provides clues for extreme sea ice fluctuations during the past 30,000 years. "Our reconstructions of the various ice conditions show how drastic the Arctic reacts even to short-term climate fluctuations", explains Juliane Müller, geoscientist at the Alfred Wegener Institute.

By means of fossil organic molecular remains, so-called biomarkers which are contained in the layers of the sediment cores, the researchers were able to verify the dates when the Fram Strait was either ice-covered or ice-free. The biomarker IP25, a complex molecule produced by algae living in the sea ice, was found in varying concentrations in the sediment; it was used as an indicator for the ice cover. A second biomarker called brassicasterol which is produced by algae living in the open water was used as counterpart in the analyses. The presence of brassicasterol in the sediments indicates ice-free periods. The combination of these two parameters enables the researchers to reconstruct different ice conditions.

For a period of extremely cold climate conditions, the last glacial maximum of about 20,000 years ago, the absence of these two biomarkers indicates permanent ice cover in the northern Fram Strait. The lasting lack of light and nutrients under the thick ice shield minimized the growth of the ice algae. A short but significant warming of the climate about 15,000 years ago, the early Bølling, caused the Arctic sea ice to melt so far that the Fram Strait remained ice-free during the winter months. The ice marker IP25 is absent in the sediment layers of this period, while the content of brassicasterol is highly increased. The simultaneous occurrence of both biomarkers in sediments of the past 5,000 years, the late Holocene, shows that the strait was only ice-covered during the winter and spring months. This seasonal change between ice-covered and ice-free water surface therefore enabled the growth of both algal species.

The sharp decline of sea ice in the central Arctic with a dramatic minimum in the year 2007 caused alarm in many researchers. "Examinations on natural changes of sea ice extent in times when humans had no impact on the climate have become a focus of numerous international research projects in the Arctic", explains Prof. Dr. Rüdiger Stein, geoscientist at the Alfred Wegener Institute. Arctic sea ice plays an important role in the thermal balance of the oceans. The ice influences among other things the mechanisms of global ocean currents, a circulation propelled by differences in temperature and salt concentration. It is in particular responsible for the mild climate in Europe in the form of the Gulf Stream. One power source of this "heat pump" is located in the Fram Strait.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 16 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>