Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil of new big cat species discovered; oldest ever found

14.11.2013
4-million-year-old skull of relative of snow leopard fleshes out fossil record of big cats and challenges suppositions about how and where they evolved

The oldest big cat fossil ever found – which fills in a significant gap in the fossil record – was discovered on a paleontological dig in Tibet, scientists announced today.


At left is: Life reconstruction of Panthera blytheae based on skull CT data; illustrated by Mauricio Antón. At Right are images of the holotype specimen and reconstructed facial bones based on CT data; Figure 1 from the paper.

Credit: Mauricio Antón (left) and Figure 1 from the paper (right)

A skull from the new species, named Panthera blytheae, was excavated and described by a team led by Jack Tseng – a PhD student at the USC Dornsife College of Letters, Arts and Sciences at the time of the discovery, and now a postdoctoral fellow at the American Museum of Natural History (AMNH) in New York.

"This find suggests that big cats have a deeper evolutionary origin than previously suspected," Tseng said.

The announcement was made in a scientific paper published by the Proceedings of the Royal Society B: Biological Sciences, on Nov. 13.

Tseng's coauthors include Xiaoming Wang, who has joint appointments at USC, the Natural History Museum of Los Angeles County (NHM) and the Page Museum at the La Brea Tar Pits, the AMNH, and the Chinese Academy of Sciences (CAS); Graham Slater of the Smithsonian Institution; Gary Takeuchi of the NHM and the Page Museum at the La Brea Tar Pits; Qiang Li of the CAS; Juan Liu of the University of Alberta and the CAS; and Guangpu Xie of the Gansu Provincial Museum.

DNA evidence suggests that the so-called "big cats" – the Pantherinae subfamily, including lions, jaguars, tigers, leopards, snow leopards, and clouded leopards – diverged from their nearest evolutionary cousins, Felinae (which includes cougars, lynxes, and domestic cats), about 6.37 million years ago. However, the oldest fossils of big cats previously found are tooth fragments uncovered at Laetoli in Tanzania (the famed hominin site excavated by Mary Leakey in the 1970s), dating to just 3.6 million years ago.

Using magnetostratigraphy – dating fossils based on the distinctive patterns of reversals in the Earth's magnetic field, which are recorded in layers of rock – Tseng and his team were able to estimate the age of the skull at between 4.10 and 5.95 million years old.

The new cat takes its name from Blythe, the snow-leopard-loving daughter of Paul and Heather Haaga, who are avid supporters of the Natural History Museum of Los Angeles County.

The find not only challenges previous suppositions about the evolution of big cats, it also helps place that evolution in a geographical context. The find occurs in a region that overlaps the majority of current big cat habitats, and suggests that the group evolved in central Asia and spread outward.

In addition, recent estimates suggested that the genus Panthera (lions, tigers, leopards, jaguars, and snow leopards) did not split from genus Neofelis (clouded leopards) until 3.72 million years ago – which the new find disproves.

Tseng, his wife Juan Liu, and Takeuchi discovered the skull in 2010 while scouting in the remote border region between Pakistan and China – an area that takes a bumpy seven-day car ride to reach from Beijing.

Liu found over one hundred bones that were likely deposited by a river eroding out of a cliff. There, below the antelope limbs and jaws, was the crushed – but largely complete – remains of the skull.

"It was just lodged in the middle of all that mess," Tseng said.

For the past three years, Tseng and his team have used both anatomical and DNA data to determine that the skull does, in fact, represent a new species.

They plan to return to the site where they found the skull in the summer to search for more specimens.

"We are in the business of discovery," said Wang, curator of vertebrate paleontology at the NHM; adjunct professor of geoscience and biology at USC; and research associate at AMNH. "We go out into the world in search of new fossils to illuminate the past."

This research was funded by National Basic Research Program of China, the Chinese Academy of Sciences, the National Science Foundation, the American Museum of Natural History, the Smithsonian Institution (National Museum of Natural History), and the National Geographic Society.

Contact:
Robert Perkins (USC) at (213) 740-9226 or perkinsr@usc.edu
Kendra Snyder (AMNH) at (212) 496-3419 or ksnyder@amnh.org
Kristin Friedrich (NHM) at (213) 763-3532 or kfriedri@nhm.org

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>