Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortuitous Research Provides First Detailed Documentation of Tsunami Erosion

29.10.2009
Tsunamis are among the most-devastating natural calamities. These earthquake-generated waves can quickly engulf low-lying land and bring widespread destruction and death. They can deposit sand and debris far inland from where they came ashore.

Now, for the first time, a group of scientists working in the Kuril Islands off the east coast of Russia has documented the scope of tsunami-caused erosion and found that a wave can carry away far more sand and dirt than it deposits.

The fortuitous observations resulted because the Kuril Biocomplexity Project had made detailed surveys of some Kuril Island coastlines during the summer of 2006, and then returned for additional work in the summers of 2007 and 2008. That provided a unique opportunity for before-and-after comparisons following a magnitude 8.3 earthquake and accompanying tsunami on Nov. 15, 2006, and an 8.1 quake and resulting tsunami on Jan. 13, 2007.

When the scientists revisited coastlines they had surveyed in 2006, they found that in some places the amount of sand and soil removed by tsunami erosion was nearly 50 times greater than the amount deposited.

"It was so extreme. I was really surprised," said Breanyn MacInnes, a University of Washington doctoral student in Earth and space sciences.

The team observed shorelines stripped of vegetation, small hills of soil and volcanic cinders washed away to expose boulders and, in one place, the unearthed rusty remnants of military equipment left behind at the end of World War II.

"We were there the year before and it had been completely covered with vegetation, and there were ridges closer to shore that had been completely removed when we returned," MacInnes said.

She is the lead author of a paper describing the observed differences in erosion and deposition, published in the November issue of the journal Geology. Co-authors are Joanne Bourgeois, a UW professor of Earth and space sciences and MacInnes' doctoral adviser, and Tatiana Pinegina and Ekaterina Kravchunovskaya of the Far East Branch of the Russian Academy of Sciences. The work was funded by the National Science Foundation and the Russian Academy of Sciences Institute of Marine Geology and Geophysics.

The Nov. 15, 2006, Kurils earthquake was large enough to raise alarms about the potential for a tsunami throughout the Pacific basin. Only very tiny waves were recorded on the Japanese island of Hokkaido, relatively near the Kurils. However, a tsunami nearly 6 feet high did more than $10 million damage to the harbor at Crescent City, Calif., some 4,500 miles away.

The Kurils themselves were hit by tsunami waves more than 70 feet high in some places, and changes in topography were dramatic.

The amount of erosion from a tsunami depends somewhat on the topography of the land, but definitely is related to the force of the wave, the scientists found. They noted that an area called South Bay on Matua Island lost about 50 cubic meters, or about 1,765 cubic feet, of sediment per meter of width, while an area called Ainu Bay lost an astounding 200 cubic meters, or about 7,060 cubic feet, of sediment per meter of width because of tsunami-induced erosion.

At a spot called Dushnaya Bay, where the tsunami was at a relatively low elevation at its greatest distance from shore, the biggest change occurred on the sandy beach, with about 5 cubic meters, or about 177 cubic feet, of sediment eroded per meter of width.

In other areas, relatively fine volcanic sand from the shore and much coarser volcanic cinders unearthed from ridges were deposited well inland, but the amount of sediment deposited was far less than the amount eroded, the researchers found.

Some of the landscape scars will remain visible for decades, or even centuries, the scientists reported. For example, along Ainu Bay ridges were removed, depressions were scoured into the topography and a lake was breached and drained.

"One thing we really noticed was that anywhere there had been human disturbance, like the remnants of a military base or even just a fencepost, there was always some sort of blowout or deeper erosion," MacInnes said.

She noted that geologists have long considered erosion to be an important factor in studying tsunamis.

"There are a lot of papers that describe erosion but they can't really quantify it. Our study is the first to say, 'This much sand was removed from the coast,'" she said.

"This emphasizes that erosion is something to consider when assessing a community's risks and vulnerability."

For more information, contact MacInnes at 206-437-2659, 206-543-6686 or macinneb@uw.edu.

NOTE: High-resolution images are available through this release at http://uwnews.org/article.asp?articleID=53117.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>