Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fate of the Forests: Massive Amounts of Charcoal enter the Worlds Oceans

19.04.2013
An international team of researchers, led by Rudolf Jaffé from Florida International University’s Southeast Environmental Research Center in Miami and Thorsten Dittmar of the Max Planck Institute for Marine Microbiology in Germany, has uncovered one of nature’s long-kept secrets — the true fate of charcoal in the world’s soils.

A seemingly ordinary topic, being able to determine the fate of charcoal is critical in helping scientists balance the global carbon budget, which in turn can help understand and mitigate climate change. However, until now, scientists only had scientific guesses as to what happens to charcoal once it’s incorporated into soil. Surprisingly, most were wrong.


Natural fire of boreal forest
Photo by Stefan Doerr, Swansea University

“Most scientists thought charcoal was resistant. They thought, once it’s incorporated into the soils, it would stay there,” Jaffé said. “But if that were the case, the soils would be black.”

Charcoal, or black carbon (BC), is a residue generated by combustion sources including wild fires and the burning of fossil fuels. Most of the charcoal in nature is from wild fires and combustion of biomass in general, according to the authors of this study. When charcoal forms it is typically deposited into the soil.

“From a chemical perspective, no one really thought it dissolves, but it does,” Jaffé said. “It doesn’t accumulate like we had believed for a long time. Rather, it is exported into wetlands and rivers, eventually making its way to the oceans.” Thorsten Dittmar, head of the Max Planck Research Group for Marine Geochemistry at the University Oldenburg in Germany, was also tracing the paths of charcoal, only from an oceanography perspective.

Thorsten Dittmar explains: “To understand the oceans we have to understand also the processes on the land, from where the organic load enters the seas. Therefore, our international team took 174 samples from fresh water sites all over the world like the Amazon River, the Congo, the Yangtze and arctic sites. In these water samples we measured dissolved charcoal. Surprisingly, in any river across the world about 10% of organic carbon that is dissolved in the water came from charcoal. With this robust relationship at hand we were able to use older scientific studies regarding organic carbon flux in rivers and estimated the global flux of dissolved charcoal.”

To map out a much more comprehensive picture, the research teams joined forces, along with researchers from Skidaway Institute of Oceanography in Georgia, Woods Hole Research Center in Massachusetts, the USDA Forest Service, and the University of Helsinki in Finland. The collaborative efforts have mapped out the conclusion that charcoal is making its way to the world’s waters. Dittmar comments that “Now, we have shown that fire is probably an integral part of the global carbon cycle”.

This one single discovery, according to Jaffé and co-workers, carries significant implications for bioengineering. The global carbon budget is a balancing act between sources that produce carbon and sinks that remove it. According to the research, the amount of dissolved charcoal transported to the oceans is keeping pace with the total charcoal generated by fires annually on a global scale.

Critical: Biochar carbon sequestration techniques and Climate Change
While the environmental consequences of the accumulation of black carbon in inland waters and the ocean are currently unknown, Jaffé said the team’s findings mean greater consideration must be given to carbon sequestration techniques. Biochar addition to soils is one such technique. Biochar technology is based on vegetation-derived charcoal that is added to agricultural soils as a means to sequester carbon. Although promising in storing carbon, Jaffé points out that as more people implement biochar technology, they must take into consideration the potential dissolution of the charcoal to ensure these techniques are actually environmentally friendly.
Jaffé and Dittmar agree that there are still many unknowns when it comes to the environmental fate of charcoal, and both plan to move on to the next phase of the research. They have proven where the charcoal goes. Now, they want to answer how this happens and what the environmental consequences are.
The authors point out the better scientists can understand the process and the environmental factors controlling it, the better chance they have of developing strategies for carbon sequestration and help mitigate climate change.
More information

Dr. Thorsten Dittmar
Max-Planck-Forschungsgruppe Marine Geochemie
Institut für Chemie und Biologie des Meeres (ICBM)
Carl-von-Ossietzky-Strasse 9-11
D-26129 Oldenburg
Tel.: 0441 798-3602
E-Mail: tdittmar@mpi-bremen.de

Dr. Jutta Niggemann
Max-Planck-Forschungsgruppe Marine Geochemie
Institut für Chemie und Biologie des Meeres (ICBM)
Carl-von-Ossietzky-Strasse 9-11
D-26129 Oldenburg
Tel.: 0441 798-3365
E-Mail: jniggema@mpi-bremen.de

or contact the press officer

Dr. Manfred Schlösser
Max-Planck-Institut für Marine Mikrobiologie
Celsiusstraße 1, D-28359 Bremen, Tel.: 0421 2028-704
E-Mail: mschloes@mpi-bremen.de

Original publication
Global Charcoal Mobilization from Soils via Dissolution and Riverine Transport to the Oceans

Rudolf Jaffé, Yan Ding, Jutta Niggemann, Anssi V. Vähätalo, Aron Stubbins, Robert G.M. Spencer, John Campbell, Thorsten Dittmar. Science 2013. DOI: 10.1126/science.1231476

Involved institutions
Southeast Environmental Research Center (SERC), and Department
of Chemistry and Biochemistry, Florida International University (FIU),
Miami, FL 33199, USA.
Max Planck Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, UniversityOldenburg,
D-29129 Oldenburg, Germany.
Department of Environmental Science, University of Helsinki, 00014 Helsinki, Finland.
Department of Biological and Environmental Science, University of Jyväskylä,
40500 Jyväskylä, Finland

Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, GA 31411, USA.

Woods Hole Research Center, 149 Woods Hole Road, Falmouth,
MA 02540, USA.
U.S. Department of Agriculture Forest Service, Northern Research Station, Durham, NH 03824, USA.

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>