Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016

A new NASA analysis of 30-years of satellite data suggests that a previously observed trend of high altitude clouds in the mid-latitudes shifting toward the poles is caused primarily by the expansion of the tropics.

Clouds are among the most important mediators of heat reaching Earth's surface. Where clouds are absent, darker surfaces like the ocean or vegetated land absorb heat, but where clouds occur their white tops reflect incoming sunlight away, which can cause a cooling effect on Earth's surface. Where and how the distribution of cloud patterns change strongly affects Earth's climate. Understanding the underlying causes of cloud migration will allow researchers to better predict how they may affect Earth's climate in the future.


The Hadley cells describe how air moves through the tropics on either side of the equator. They are two of six major air circulation cells on Earth.

Credits: NASA

George Tselioudis, a climate scientist at NASA's Goddard Institute for Space Studies and Columbia University in New York City, was interested in which air currents were shifting clouds at high altitude - between about three and a half and six miles high - toward the poles.

The previous suggested reason was that climate change was shifting storms and the powerful air currents known as the jet streams - including the one that traverses the United States - toward the poles, which in turn were driving the movement of the clouds.

To see if that was the case, Tselioudis and his colleagues analyzed the International Satellite Cloud Climatology Project data set, which combines cloud data from operational weather satellites, including those run by the National Oceanic and Atmospheric Administration, to provide a 30-year record of detailed cloud observations. They combined the cloud data with a computer re-creation of Earth's air currents for the same period driven by multiple surface observations and satellite data sets.

What they discovered was that the poleward shift of the clouds, which occurs in both the Northern and Southern Hemispheres, connected more strongly with the expansion of the tropics, defined by the general circulation Hadley cell, than with the movement of the jets.

The Hadley cell is one of the major ways air is moved around the planet. Existing in both hemispheres, it starts when air in the tropics, which is heated at the surface by intense sunlight, warms and rises. At high altitudes it is pushed away from the equator towards the mid-latitudes to the north and south, then it begins to sink back to Earth's surface, closing the loop.

"What we find, and other people have found it as well, is that the sinking branch of the Hadley cell, as the climate warms, tends to be moving poleward," said Tselioudis. "It's like you're making the tropical region bigger." And that expansion causes the tropical air currents to blow into the high altitude clouds, pushing them toward the poles, he said. The results were published in Geophysical Research Letters, a journal of the American Geophysical Union.

Scientists are working to understand exactly why the tropics are expanding, which they believe is related to a warming climate.

The poleward shift of high altitude clouds affects how much sunlight reaches Earth's surface because when they move, they reveal what's below.

"It's like pulling a curtain," said Tselioudis. And what tends to be revealed depends on location - which in turn affects whether the surface below warms or not.

"Sometimes when that curtain is pulled, as in the case over the North Atlantic ocean in the winter months, this reduces the overall cloud cover" in the lower mid-latitudes, the temperate regions outside of the tropics, Tselioudis said. The high altitude clouds clear to reveal dark ocean below - which absorbs incoming sunlight and causes a warming effect.

However, in the Southern Ocean around Antarctica, the high altitude clouds usually clear out of the way to reveal lower altitude clouds below - which continue to reflect sunlight from their white tops, causing little effect on the solar radiation reaching the surface.

When the results are taken together, the bottom line is that the cloud interactions with atmospheric circulation and solar radiation are complicated, and the tropical circulation appears to play a dominant role, said Tselioudis.

That information is a new insight that will likely be used by the climate modeling community, including the scientists who contribute modeling expertise to the Intergovernmental Panel on Climate Change, said Lazaros Oreopoulos, a cloud and radiation budget researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. Climate modelers aim for their computer simulations to correspond as closely to reality as possible in order to reliably predict Earth's future climate.

"If current behavior is not well simulated, then confidence in predicted future behavior will be lower," Oreopoulos said. "I anticipate this study to be looked at carefully and affect thinking on these matters."

###

Read the paper at Geophysical Research Letters: http://onlinelibrary.wiley.com/doi/10.1002/2016GL068242/abstract

Ellen Gray | EurekAlert!

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>