Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA leads the way to map boreal forest

21.10.2008
How best to map ‘boreal’ or northern forest with spaceborne radar is the focus of an ESA campaign currently underway in northern Sweden. By answering this question, the campaign addresses one of the key objectives of the candidate Earth Explorer BIOMASS mission.

BIOMASS is one of six candidate Earth Explorer missions that has just completed assessment study and will be presented to the science community at a User Consultation Meeting in January 2009. Up to three of the missions will subsequently be selected for the next stage of development (feasibility study), leading to the eventual implementation of ESA’s seventh Earth Explorer mission.

Covering about 15% of the Earth’s land surface, boreal forest plays an important role in the global cycling of energy, carbon and water. The boreal region forms a circumpolar band throughout the northern hemisphere that extends through Russia, northern Europe, Canada and Alaska. The great expanse and large quantity of carbon contained in vegetation and soil make the boreal biome the world's largest terrestrial carbon reservoir.

Since forest biomass is half carbon, the BIOMASS mission, if selected, is expected to greatly improve our knowledge of how much carbon is being stored, where it is being stored and better quantify carbon fluxes between land and the atmosphere – important for understanding more about the global carbon cycle and climate change.

To achieve this goal, the mission will exploit the longest radar wavelength available for satellites observing the Earth from space – P-band. This wavelength is uniquely sensitive to mapping biomass from space. Malcolm Davidson, Head of ESA’s Campaign Unit explains, "The BioSAR 2008 campaign represents the first-ever ESA airborne Synthetic Aperture Radar (SAR) campaign over northern boreal forest. Because of the importance of boreal forests for the BIOMASS mission, and the global carbon cycle in general, highly accurate and robust methods for transforming the P-band radar signals into forest biomass maps are required. By collecting airborne SAR measurements at P-Band over boreal forest and comparing these to extensive measurements made on the ground we can ensure that the satellite mission will accurately map forest biomass across this unique biome."

The campaign is being conducted in the air by DLR’s (German Aerospace Center) Microwaves and Radar Institute using the E-SAR (Experimental Synthetic Aperture Radar) instrument. Ground measurements are also taken of essential forest characteristics such as biomass, forest height and ground conditions by the Swedish University of Agricultural Sciences in Umeå (SLU) supported by the Swedish Defence Research Agency (FOI) and Sweden’s Chalmers University. In addition, forest height measurements of the entire test site were made this summer using a sophisticated helicopter-based laser scanning system.

Measuring forest properties on the ground can be hard work especially when you also have to deal with mosquitoes, the harsh northern climate and rugged terrain. However, more than 300 plots within the forest were measured during the summer by SLU. This ground-based data is currently being compiled and formatted for analysis.

"We are very pleased that the Krycklan test site was selected for the campaign," says Johan Fransson from SLU. "It provides us with an excellent opportunity to conduct a large-scale inventory of forest properties in our research site and complements parallel efforts being made in our department to develop new methods for assessing and mapping forest resources using remote sensing. We expect to learn a lot from this campaign."

One interesting and unique feature of boreal forests is that, due to the harsh climate, they grow very slowly compared to temperate and tropical forests. As Lars Ulander from FOI and Chalmers University points out, "When entering some of the forest stands in the test site with larger trees, it is impressive to think how old these trees are. Some forest stands are more than 100 years old – so that biomass in such cases is the result of 100 years of growth."

Beyond the immediate needs of the BIOMASS mission, the interest in the campaigns is expected to be enormous, as a complete remote sensing dataset and simultaneously acquired ground data are rare. Once the activity has been completed, the dataset will be made available to the wider scientific community through ESA.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMN353IDMF_planet_0.html

Further reports about: Biomass ESA P-band Radar SAR boreal forest carbon cycle remote sensing

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>