Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecosystem, vegetation affect intensity of urban heat island effect

17.12.2009
NASA researchers studying urban landscapes have found that the intensity of the "heat island" created by a city depends on the ecosystem it replaced and on the regional climate. Urban areas developed in arid and semi-arid regions show far less heating compared with the surrounding countryside than cities built amid forested and temperate climates.

"The placement and structure of cities – and what was there before -- really does matter," said Marc Imhoff, biologist and remote sensing specialist at NASA's Goddard Space Flight Center in Greenbelt, Md. "The amount of the heat differential between the city and the surrounding environment depends on how much of the ground is covered by trees and vegetation. Understanding urban heating will be important for building new cities and retrofitting existing ones."

Goddard researchers including Imhoff, Lahouari Bounoua, Ping Zhang, and Robert Wolfe presented their findings on Dec. 16 in San Francisco at the Fall Meeting of the American Geophysical Union.

Scientists first discovered the heat island effect in the 1800s when they observed cities growing warmer than surrounding rural areas, particularly in summer. Urban surfaces of asphalt, concrete, and other materials -- also referred to as "impervious surfaces" -- absorb more solar radiation by day. At night, much of that heat is given up to the urban air, creating a warm bubble over a city that can be as much as 1 to 3°C (2 to 5°F) higher than temperatures in surrounding rural areas.

The impervious surfaces of cities also lead to faster runoff from land, reducing the natural cooling effects of water on the landscape. More importantly, the lack of trees and other vegetation means less evapotranspiration – the process by which trees "exhale" water. Trees also provide shade, a secondary cooling effect in urban landscapes.

Using instruments from NASA's Terra and Aqua satellites, as well as the joint U.S. Geological Survey-NASA satellite Landsat, researchers created land-use maps distinguishing urban surfaces from vegetation. The team then used computer models to assess the impact of urbanized land on energy, water, and carbon balances at Earth's surface.

When examining cities in arid and semi-arid regions – such as North Africa and the American Southwest -- scientists found that they are only slightly warmer than surrounding areas in summer and sometimes cooler than surrounding areas in winter.

In the U.S., the summertime urban heat island (UHI) for desert cities like Las Vegas was 0.46°C lower than surrounding areas, compared to 10°C higher for cities like Baltimore. Globally, the differences were not as large, with a summertime UHI of -0.21°C for desert cities compared to +3.8°C for cities in forested regions.

In a quirk of surface heating, the suburban areas around desert cities are actually cooler than both the city center and the outer rural areas because the irrigation of lawns and small farms leads to more moisture in the air from plants that would not naturally grow in the region.

"If you build a city in an area that is naturally forested – such as Atlanta or Baltimore -- you are making a much deeper alteration of the ecosystem," said Imhoff. "In semi-arid areas with less vegetation – like Las Vegas or Phoenix -- you are making less of a change in the energy balance of the landscape."

"The open question is: do changes in land cover and urbanization affect global temperatures and climate?" Imhoff added. "Urbanization is perceived as a relatively small effect, and most climate models focus on how the oceans and atmosphere store and balance heat. Urban heat islands are a lot of small, local changes, but do they add up? Studies of the land input are still in early stages."

Related Links

Urban Rain
http://earthobservatory.nasa.gov/Features/UrbanRain/urbanrain.php
Terra@Ten
http://terra.nasa.gov/Ten/
Deep Freeze and Sea Breeze
http://earthobservatory.nasa.gov/Features/DeepFreeze/deep_freeze.php
Beating the Heat in the World's Big Cities
http://earthobservatory.nasa.gov/Features/GreenRoof/
Urban Heat Islands Make Cities Greener
http://www.nasa.gov/centers/goddard/news/topstory/2004/0801uhigreen.html
Atlanta: Daytime Thermal View of the Heat Island
http://svs.gsfc.nasa.gov/vis/a000000/a001000/a001052/index.html
Urbanization's Aftermath
http://earthobservatory.nasa.gov/Features/Lights3/lights_carbon.php

Michael Carlowicz | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>