Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth Is Warmer Today Than During 70 to 80 Percent of the Past 11,300 Years

08.03.2013
Reconstruction of Earth history shows significance of temperature rise

With data from 73 ice and sediment core monitoring sites around the world, scientists have reconstructed Earth's temperature history back to the end of the last Ice Age.

The analysis reveals that the planet today is warmer than it's been during 70 to 80 percent of the last 11,300 years.

Results of the study, by researchers at Oregon State University (OSU) and Harvard University, are published this week in a paper in the journal Science.

Lead paper author Shaun Marcott of OSU says that previous research on past global temperature change has largely focused on the last 2,000 years.

Extending the reconstruction of global temperatures back to the end of the last Ice Age puts today's climate into a larger context.

"We already knew that on a global scale, Earth is warmer today than it was over much of the past 2,000 years," Marcott says. "Now we know that it is warmer than most of the past 11,300 years."

"The last century stands out as the anomaly in this record of global temperature since the end of the last ice age," says Candace Major, program director in the National Science Foundation's (NSF) Division of Ocean Sciences. The research was funded by the Paleoclimate Program in NSF’s Division of Atmospheric and Geospace Sciences.

"This research shows that we've experienced almost the same range of temperature change since the beginning of the industrial revolution," says Major, "as over the previous 11,000 years of Earth history--but this change happened a lot more quickly."

Of concern are projections of global temperature for the year 2100, when climate models evaluated by the Intergovernmental Panel on Climate Change show that temperatures will exceed the warmest temperatures during the 11,300-year period known as the Holocene under all plausible greenhouse gas emission scenarios.

Peter Clark, an OSU paleoclimatologist and co-author of the Science paper, says that many previous temperature reconstructions were regional and not placed in a global context.

"When you just look at one part of the world, temperature history can be affected by regional climate processes like El Niño or monsoon variations," says Clark.

"But when you combine data from sites around the world, you can average out those regional anomalies and get a clear sense of the Earth's global temperature history."

What that history shows, the researchers say, is that during the last 5,000 years, the Earth on average cooled about 1.3 degrees Fahrenheit--until the last 100 years, when it warmed about 1.3 degrees F.

The largest changes were in the Northern Hemisphere, where there are more land masses and larger human populations than in the Southern Hemisphere.

Climate models project that global temperature will rise another 2.0 to 11.5 degrees F by the end of this century, largely dependent on the magnitude of carbon emissions.

"What is most troubling," Clark says, "is that this warming will be significantly greater than at any time during the past 11,300 years."

Marcott says that one of the natural factors affecting global temperatures during the last 11,300 years is a gradual change in the distribution of solar insolation linked with Earth's position relative to the sun.

"During the warmest period of the Holocene, the Earth was positioned such that Northern Hemisphere summers warmed more," Marcott says.

"As the Earth's orientation changed, Northern Hemisphere summers became cooler, and we should now be near the bottom of this long-term cooling trend--but obviously, we're not."

The research team, which included Jeremy Shakun of Harvard and Alan Mix of OSU, primarily used fossils from ocean sediment cores and terrestrial archives to reconstruct the temperature history.

The chemical and physical characteristics of the fossils--including the species as well as their chemical composition and isotopic ratios--provide reliable proxy records for past temperatures by calibrating them to modern temperature records.

Analyses of data from the 73 sites allow a global picture of the Earth's history and provide a new context for climate change analysis.

"The Earth's climate is complex and responds to multiple forcings, including carbon dioxide and solar insolation," Marcott says.

"Both changed very slowly over the past 11,000 years. But in the last 100 years, the increase in carbon dioxide through increased emissions from human activities has been significant.

"It's the only variable that can best explain the rapid increase in global temperatures."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Mark Floyd, OSU (541) 737-0788 mark.floyd@oregonstate.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>