Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's most prominent rainfall feature creeping northward

06.07.2009
The rain band near the equator that determines the supply of freshwater to nearly a billion people throughout the tropics and subtropics has been creeping north for more than 300 years, probably because of a warmer world, according to research published in the July issue of Nature Geoscience.

If the band continues to migrate at just less than a mile (1.4 kilometers) a year, which is the average for all the years it has been moving north, then some Pacific islands near the equator – even those that currently enjoy abundant rainfall – may be drier within decades and starved of freshwater by midcentury or sooner. The prospect of additional warming because of greenhouse gases means that situation could happen even sooner.

The findings suggest "that increasing greenhouse gases could potentially shift the primary band of precipitation in the tropics with profound implications for the societies and economies that depend on it," the article says.

"We're talking about the most prominent rainfall feature on the planet, one that many people depend on as the source of their freshwater because there is no groundwater to speak of where they live," says Julian Sachs, associate professor of oceanography at the University of Washington and lead author of the paper. "In addition many other people who live in the tropics but farther afield from the Pacific could be affected because this band of rain shapes atmospheric circulation patterns throughout the world."

The band of rainfall happens at what is called the intertropical convergence zone. There, just north of the equator, trade winds from the northern and southern hemispheres collide at the same time heat pours into the atmosphere from the tropical sun. Rain clouds 30,000 feet thick in places proceed to dump as much as 13 feet (4 meters) of rain a year in some places. The band stretching across the Pacific is generally between 3 degrees and 10 degrees north of the equator depending on the time of year. It has recently been hypothesized that the intertropical convergence zone does not reside in the southern hemisphere for reasons having to do with the distribution of land masses and locations of major mountain ranges in the world, particularly the Andes mountains, that have not changed for millions of years.

The new article presents surprising evidence that the intertropical convergence zone hugged the equator some 3 ½ centuries ago during Earth's little ice age, which lasted from 1400 to 1850.

The authors analyzed the record of rainfall in lake and lagoon sediments from four Pacific islands at or near the equator.

One of the islands they studied, Washington Island, is about 5 degrees north of the equator. Today it is at the southern edge of the intertropical convergence zone and receives nearly 10 feet (2.9 meters) of rain a year. But cores reveal a very different Washington Island in the past: It was arid, especially during the little ice age.

Among other things, the scientists looked for evidence in sediment cores of salt-tolerant microbes. On Washington Island they found that evidence in 400- to 1,000-year-old sediment underlying what is now a freshwater lake. Such organisms could only have thrived if rainfall was much reduced from today's high levels on the island. Additional evidence for changes in rainfall were provided by ratios of hydrogen isotopes of material in the sediments that can only be explained by large changes in precipitation.

Sediment cores from Palau, which lies about 7 degrees north of the equator and in the heart of the modern convergence zone, also revealed arid conditions during the little ice age.

In contrast, the researchers present evidence that the Galapagos Islands, today an arid place on the equator in the Eastern Pacific, had a wet climate during the little ice age.

They write, "The observations of dry climates on Washington Island and Palau and a wet climate in the Galapagos between about 1420-1560/1640 provide strong evidence for an intertropical convergence zone located perennially south of Washington Island (5 degrees north) during that time and perhaps until the end of the eighteenth century."

If the zone at that time experienced seasonal variations of 7 degrees latitude, as it does today, then during some seasons it would have extended southward to at least the equator, Sachs says. This has been inferred previously from studies of the intertropical convergence zone on or near the continents, but the new data from the Pacific Ocean region is clearer because the feature is so easy to identify there.

The remarkable southward shift in the location of the intertropical convergence zone during the little ice age cannot be explained by changes in the distribution of continents and mountain ranges because they were in the same places in the little ice age as they are now. Instead, the co-authors point out that the Earth received less solar radiation during the little ice age, about 0.1 percent less than today, and speculate that may have caused the zone to hover closer to the equator until solar radiation picked back up.

"If the intertropical convergence zone was 550 kilometers, or 5 degrees, south of its present position as recently as 1630, it must have migrated north at an average rate of 1.4 kilometers – just less than a mile – a year," Sachs says. "Were that rate to continue, the intertropical convergence zone will be 126 kilometers – or more than 75 miles – north of its current position by the latter part of this century."

Other co-authors of the paper that went online June 28 are three of Sachs' former postdoctoral students, Dirk Sachse at the University of Potsdam, Germany; Rienk Smittenberg at the Swiss Federal Institute of Technology Zurich, Switzerland; and Zhaohui Zhang at the Nanjing University, China; as well as Stjepko Golubic of Boston University; and David Battisti, UW professor of atmospheric sciences.

The work was funded by the National Science Foundation, National Oceanic and Atmospheric Administration and the Gary Comer Science and Education Foundation.

For more information:

To reach Sachs or Battisti, please contact Sandra Hines, 206-543-2580 or shines@u.washington.edu. Sachs is in the Marshall Islands and available through July 8. As of July 9, he will be in the field until August and out of touch. Communication by e-mail is spotty.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>