Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth's massive extinction: The story gets worse

Scientists have uncovered a lot about the Earth's greatest extinction event that took place 250 million years ago when rapid climate change wiped out nearly all marine species and a majority of those on land. Now, they have discovered a new culprit likely involved in the annihilation: an influx of mercury into the eco-system.

"No one had ever looked to see if mercury was a potential culprit. This was a time of the greatest volcanic activity in Earth's history and we know today that the largest source of mercury comes from volcanic eruptions," says Dr. Steve Grasby, co-author of a paper published this month in the journal Geology. "We estimate that the mercury released then could have been up to 30 times greater than today's volcanic activity, making the event truly catastrophic." Grasby is a research scientist at Natural Resources Canada and an adjunct professor at the University of Calgary.

Dr. Benoit Beauchamp, professor of geology at the University of Calgary, says this study is significant because it's the first time mercury has been linked to the cause of the massive extinction that took place during the end of the Permian.

"Geologists, including myself should be taking notes and taking another look at the other five big extinction events," says Beauchamp, also a co-author.

During the late Permian, the natural buffering system in the ocean became overloaded with mercury contributing to the loss of 95 per cent of life in the sea.

"Typically, algae acts like a scavenger and buries the mercury in the sediment, mitigating the effect in the oceans," says lead-author Dr. Hamed Sanei, research scientist at Natural Resources Canada and adjunct professor at the University of Calgary. "But in this case, the load was just so huge that it could not stop the damage."

About 250 million years ago, a time long before dinosaurs ruled and when all land formed one big continent, the majority of life in the ocean and on land was wiped out. The generally accepted idea is that volcanic eruptions burned though coal beds, releasing CO2 and other deadly toxins. Direct proof of this theory was outlined in a paper that was published by these same authors last January in Nature Geoscience.

The mercury deposition rates could have been significantly higher in the late Permian when compared with today's human-caused emissions. In some cases, levels of mercury in the late Permian ocean was similar to what is found near highly contaminated ponds near smelters, where the aquatic system is severely damaged, say researchers.

"We are adding to the levels through industrial emissions. This is a warning for us here on Earth today," adds Beauchamp. Canada has taken a lead role in reducing emissions internationally. In North America, at least, there has been a steady decline through regulations controlling mercury.

No matter what happens, this study shows life's tenacity. "The story is one of recovery as well. After the system was overloaded and most of life was destroyed, the oceans were still able to self clean and we were able to move on to the next phase of life," says Sanei.

Leanne Yohemas | EurekAlert!
Further information:

Further reports about: Ressource volcanic activity volcanic eruptions

More articles from Earth Sciences:

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>