Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's massive extinction: The story gets worse

06.01.2012
Scientists have uncovered a lot about the Earth's greatest extinction event that took place 250 million years ago when rapid climate change wiped out nearly all marine species and a majority of those on land. Now, they have discovered a new culprit likely involved in the annihilation: an influx of mercury into the eco-system.

"No one had ever looked to see if mercury was a potential culprit. This was a time of the greatest volcanic activity in Earth's history and we know today that the largest source of mercury comes from volcanic eruptions," says Dr. Steve Grasby, co-author of a paper published this month in the journal Geology. "We estimate that the mercury released then could have been up to 30 times greater than today's volcanic activity, making the event truly catastrophic." Grasby is a research scientist at Natural Resources Canada and an adjunct professor at the University of Calgary.

Dr. Benoit Beauchamp, professor of geology at the University of Calgary, says this study is significant because it's the first time mercury has been linked to the cause of the massive extinction that took place during the end of the Permian.

"Geologists, including myself should be taking notes and taking another look at the other five big extinction events," says Beauchamp, also a co-author.

During the late Permian, the natural buffering system in the ocean became overloaded with mercury contributing to the loss of 95 per cent of life in the sea.

"Typically, algae acts like a scavenger and buries the mercury in the sediment, mitigating the effect in the oceans," says lead-author Dr. Hamed Sanei, research scientist at Natural Resources Canada and adjunct professor at the University of Calgary. "But in this case, the load was just so huge that it could not stop the damage."

About 250 million years ago, a time long before dinosaurs ruled and when all land formed one big continent, the majority of life in the ocean and on land was wiped out. The generally accepted idea is that volcanic eruptions burned though coal beds, releasing CO2 and other deadly toxins. Direct proof of this theory was outlined in a paper that was published by these same authors last January in Nature Geoscience.

The mercury deposition rates could have been significantly higher in the late Permian when compared with today's human-caused emissions. In some cases, levels of mercury in the late Permian ocean was similar to what is found near highly contaminated ponds near smelters, where the aquatic system is severely damaged, say researchers.

"We are adding to the levels through industrial emissions. This is a warning for us here on Earth today," adds Beauchamp. Canada has taken a lead role in reducing emissions internationally. In North America, at least, there has been a steady decline through regulations controlling mercury.

No matter what happens, this study shows life's tenacity. "The story is one of recovery as well. After the system was overloaded and most of life was destroyed, the oceans were still able to self clean and we were able to move on to the next phase of life," says Sanei.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Ressource volcanic activity volcanic eruptions

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>