Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early human habitat was savanna, not forest

Pre-humans living in East Africa 4.4 million years ago inhabited savannas -- grassy plains dotted with trees and shrubs -- according to a team of researchers that includes earth science Naomi Levin of The Johns Hopkins University's Krieger School of Arts and Sciences.

This conclusion is at odds with a theory – which holds that these early beings lived in a mostly forested environment – put forth by prominent University of California at Berkeley researcher Tim D. White and his team in a 2009 issue of the journal Science.

"Our team examined the data published by White and his colleagues last October and found that their data does not support their conclusion that Ardipithecus ramidus lived exclusively in woodlands and forest patches," said Levin, whose team published a commentary on the matter in today's issue of Science. "The White team's papers stress the wooded nature of A. ramidus's environment and say specifically that Ardi did not live in a savanna. Yet, the actual data they present are consistent with exactly that: a savanna environment with a mix of grasses and trees."

This criticism is important because the claim that the 4.4 million-year-old fossil nicknamed "Ardi" lived in woodlands and forest patches was used as an argument against a longstanding theory of human evolution known as the "savanna hypothesis." According to that premise, the expansion of savannas – grassy plains dotted with trees and shrubs – prompted our ape-like forebears to descend from trees and begin walking upright to find food more efficiently, or to reach other trees for resources or shelter.

Levin, an assistant professor of earth and planetary sciences at Johns Hopkins, was part of a team of eight geologists and anthropologists from seven universities led by Thure E. Cerling of the University of Utah. They used the White team's own data to draw very different conclusion about the environment inhabited by Ardi, an omnivorous, ape-like creature that stood about 4 feet tall and had a brain less than a quarter of the size of a modern day human's. This data was collected from ancient soils, plant fossils and other remains in the area now known as Aramis, in Ethiopia.

Levin's team found that tropical grasses, in fact, comprised between 40 and 60 percent of the biomass in Ardi's world.

Levin says her team's conclusion is noteworthy because, if scientists are to evaluate the environmental pressures that triggered the evolutionary success of some traits over others, they must clearly understand the environment itself.

"In their papers and summaries, White and his colleagues emphasize that A. ramidus had a mix of traits that suggest it was at ease both walking upright on the ground and moving through the trees on its palms," Levin explains. "If the habitat of A. ramidus was, in fact, a woodland with forest patches, where grasses were rare, then it's unlikely that the increased presence of grassy environments were the driving force behind the origin of upright walking in early human ancestors. However, if the habitat of A. ramidus included savannas where grasses were up to 60 percent of the available biomass, then we cannot rule out the possibility that open environments played an important role in human origins and, in particular, in the origins of upright walking. The scientific community and the public should not accept an exclusively woodland/forested habitat for A. ramidus and the origins of upright walking, because the data do not support it."

The critique concludes that although its authors do not judge the validity of the savanna hypothesis, the connection between human ancestors walking upright and the expansion of grasslands remains a viable idea.

Contact the Office of News and Information at or 443-287-9960 for a copy of the Science article.

Related links: Levin's webpage:

Lisa DeNike | EurekAlert!
Further information:

Further reports about: Science TV planetary science tropical grass upright walking

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>