Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early human habitat was savanna, not forest

28.05.2010
Pre-humans living in East Africa 4.4 million years ago inhabited savannas -- grassy plains dotted with trees and shrubs -- according to a team of researchers that includes earth science Naomi Levin of The Johns Hopkins University's Krieger School of Arts and Sciences.

This conclusion is at odds with a theory – which holds that these early beings lived in a mostly forested environment – put forth by prominent University of California at Berkeley researcher Tim D. White and his team in a 2009 issue of the journal Science.

"Our team examined the data published by White and his colleagues last October and found that their data does not support their conclusion that Ardipithecus ramidus lived exclusively in woodlands and forest patches," said Levin, whose team published a commentary on the matter in today's issue of Science. "The White team's papers stress the wooded nature of A. ramidus's environment and say specifically that Ardi did not live in a savanna. Yet, the actual data they present are consistent with exactly that: a savanna environment with a mix of grasses and trees."

This criticism is important because the claim that the 4.4 million-year-old fossil nicknamed "Ardi" lived in woodlands and forest patches was used as an argument against a longstanding theory of human evolution known as the "savanna hypothesis." According to that premise, the expansion of savannas – grassy plains dotted with trees and shrubs – prompted our ape-like forebears to descend from trees and begin walking upright to find food more efficiently, or to reach other trees for resources or shelter.

Levin, an assistant professor of earth and planetary sciences at Johns Hopkins, was part of a team of eight geologists and anthropologists from seven universities led by Thure E. Cerling of the University of Utah. They used the White team's own data to draw very different conclusion about the environment inhabited by Ardi, an omnivorous, ape-like creature that stood about 4 feet tall and had a brain less than a quarter of the size of a modern day human's. This data was collected from ancient soils, plant fossils and other remains in the area now known as Aramis, in Ethiopia.

Levin's team found that tropical grasses, in fact, comprised between 40 and 60 percent of the biomass in Ardi's world.

Levin says her team's conclusion is noteworthy because, if scientists are to evaluate the environmental pressures that triggered the evolutionary success of some traits over others, they must clearly understand the environment itself.

"In their papers and summaries, White and his colleagues emphasize that A. ramidus had a mix of traits that suggest it was at ease both walking upright on the ground and moving through the trees on its palms," Levin explains. "If the habitat of A. ramidus was, in fact, a woodland with forest patches, where grasses were rare, then it's unlikely that the increased presence of grassy environments were the driving force behind the origin of upright walking in early human ancestors. However, if the habitat of A. ramidus included savannas where grasses were up to 60 percent of the available biomass, then we cannot rule out the possibility that open environments played an important role in human origins and, in particular, in the origins of upright walking. The scientific community and the public should not accept an exclusively woodland/forested habitat for A. ramidus and the origins of upright walking, because the data do not support it."

The critique concludes that although its authors do not judge the validity of the savanna hypothesis, the connection between human ancestors walking upright and the expansion of grasslands remains a viable idea.

Contact the Office of News and Information at Lde@jhu.edu or 443-287-9960 for a copy of the Science article.

Related links: Levin's webpage: http://eps.jhu.edu/bios/naomi-levin/index.html

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

Further reports about: Science TV planetary science tropical grass upright walking

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>