Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust Plays Larger than Expected Role in Determining Atlantic Temperature

27.03.2009
The recent warming trend in the Atlantic Ocean is largely due to reductions in airborne dust and volcanic emissions during the past 30 years, according to a new study.

Since 1980, the tropical North Atlantic has been warming by an average of a quarter-degree Celsius (a half-degree Fahrenheit) per decade.

Though this number sounds small, it can translate to big impacts on hurricanes, which thrive on warmer water, says Amato Evan, a researcher with the University of Wisconsin-Madison’s Cooperative Institute for Meteorological Satellite Studies and lead author of the new study. For example, the ocean temperature difference between 1994, a quiet hurricane year, and 2005’s record-breaking year of storms, was just one degree Fahrenheit.

More than two-thirds of this upward trend in recent decades can be attributed to changes in African dust storm and tropical volcano activity during that time, report Evan and his colleagues at UW-Madison and the National Oceanic and Atmospheric Administration in a new paper. Their findings will appear in an upcoming issue of the journal Science and publish online March 26.

Evan and his colleagues have previously shown that African dust and other airborne particles can suppress hurricane activity by reducing how much sunlight reaches the ocean and keeping the sea surface cool. Dusty years predict mild hurricane seasons, while years with low dust activity — including 2004 and 2005 — have been linked to stronger and more frequent storms.

In the new study, they combined satellite data of dust and other particles with existing climate models to evaluate the effect on ocean temperature. They calculated how much of the Atlantic warming observed during the last 26 years can be accounted for by concurrent changes in African dust storms and tropical volcanic activity, primarily the eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo in the Philippines in 1991.

In fact, it is a surprisingly large amount, Evan says. “A lot of this upward trend in the long-term pattern can be explained just by dust storms and volcanoes,” he says. “About 70 percent of it is just being forced by the combination of dust and volcanoes, and about a quarter of it is just from the dust storms themselves.”

The result suggests that only about 30 percent of the observed Atlantic temperature increases are due to other factors, such as a warming climate. While not discounting the importance of global warming, Evan says this adjustment brings the estimate of global warming impact on Atlantic more into line with the smaller degree of ocean warming seen elsewhere, such as the Pacific.

“This makes sense, because we don’t really expect global warming to make the ocean [temperature] increase that fast,” he says.

Volcanoes are naturally unpredictable and thus difficult to include in climate models, Evan says, but newer climate models will need to include dust storms as a factor to accurately predict how ocean temperatures will change.

“We don’t really understand how dust is going to change in these climate projections, and changes in dust could have a really good effect or a really bad effect,” he says.

Satellite research of dust-storm activity is relatively young, and no one yet understands what drives dust variability from year to year. However, the fundamental role of the temperature of the tropical North Atlantic in hurricane formation and intensity means that this element will be critical to developing a better understanding of how the climate and storm patterns may change.

“Volcanoes and dust storms are really important if you want to understand changes over long periods of time,” Evan says. “If they have a huge effect on ocean temperature, they’re likely going to have a huge effect on hurricane variability as well.”

The new paper is coauthored by Ralf Bennartz and Daniel Vimont of UW-Madison and Andrew Heidinger and James Kossin of the National Oceanic and Atmospheric Administration and UW-Madison.

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>