Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust Plays Larger than Expected Role in Determining Atlantic Temperature

27.03.2009
The recent warming trend in the Atlantic Ocean is largely due to reductions in airborne dust and volcanic emissions during the past 30 years, according to a new study.

Since 1980, the tropical North Atlantic has been warming by an average of a quarter-degree Celsius (a half-degree Fahrenheit) per decade.

Though this number sounds small, it can translate to big impacts on hurricanes, which thrive on warmer water, says Amato Evan, a researcher with the University of Wisconsin-Madison’s Cooperative Institute for Meteorological Satellite Studies and lead author of the new study. For example, the ocean temperature difference between 1994, a quiet hurricane year, and 2005’s record-breaking year of storms, was just one degree Fahrenheit.

More than two-thirds of this upward trend in recent decades can be attributed to changes in African dust storm and tropical volcano activity during that time, report Evan and his colleagues at UW-Madison and the National Oceanic and Atmospheric Administration in a new paper. Their findings will appear in an upcoming issue of the journal Science and publish online March 26.

Evan and his colleagues have previously shown that African dust and other airborne particles can suppress hurricane activity by reducing how much sunlight reaches the ocean and keeping the sea surface cool. Dusty years predict mild hurricane seasons, while years with low dust activity — including 2004 and 2005 — have been linked to stronger and more frequent storms.

In the new study, they combined satellite data of dust and other particles with existing climate models to evaluate the effect on ocean temperature. They calculated how much of the Atlantic warming observed during the last 26 years can be accounted for by concurrent changes in African dust storms and tropical volcanic activity, primarily the eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo in the Philippines in 1991.

In fact, it is a surprisingly large amount, Evan says. “A lot of this upward trend in the long-term pattern can be explained just by dust storms and volcanoes,” he says. “About 70 percent of it is just being forced by the combination of dust and volcanoes, and about a quarter of it is just from the dust storms themselves.”

The result suggests that only about 30 percent of the observed Atlantic temperature increases are due to other factors, such as a warming climate. While not discounting the importance of global warming, Evan says this adjustment brings the estimate of global warming impact on Atlantic more into line with the smaller degree of ocean warming seen elsewhere, such as the Pacific.

“This makes sense, because we don’t really expect global warming to make the ocean [temperature] increase that fast,” he says.

Volcanoes are naturally unpredictable and thus difficult to include in climate models, Evan says, but newer climate models will need to include dust storms as a factor to accurately predict how ocean temperatures will change.

“We don’t really understand how dust is going to change in these climate projections, and changes in dust could have a really good effect or a really bad effect,” he says.

Satellite research of dust-storm activity is relatively young, and no one yet understands what drives dust variability from year to year. However, the fundamental role of the temperature of the tropical North Atlantic in hurricane formation and intensity means that this element will be critical to developing a better understanding of how the climate and storm patterns may change.

“Volcanoes and dust storms are really important if you want to understand changes over long periods of time,” Evan says. “If they have a huge effect on ocean temperature, they’re likely going to have a huge effect on hurricane variability as well.”

The new paper is coauthored by Ralf Bennartz and Daniel Vimont of UW-Madison and Andrew Heidinger and James Kossin of the National Oceanic and Atmospheric Administration and UW-Madison.

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>