Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drastic Desertification

21.08.2012
Over the past 10,000 years, climate changes in the Dead Sea region have led to surprisingly swift desertification within mere decades.
This is what researchers from the University of Bonn and their Israeli colleagues found when analyzing pollen in sediments and fluctuations in sea levels, calling the findings 'dramatic.' They are presented in the current issue of the international geosciences journal "Quaternary Science Reviews," whose print version is published on 23 August.

The Dead Sea, a salt sea without an outlet, lies over 400 meters below sea level. Tourists like its high salt content because it increases their buoyancy. "For scientists, however, the Dead Sea is a popular archive that provides a diachronic view of its climate past," says Prof. Dr. Thomas Litt from the Steinmann-Institute for Geology, Mineralogy and Paleontology at the University of Bonn.

Using drilling cores from riparian lake sediments, paleontologists and meteorologists from the University of Bonn deduced the climate conditions of the past 10,000 years. This became possible because the Dead Sea level has sunk drastically over the past years, mostly because of increasing water withdrawals lowering the water supply.

Oldest pollen analysis

In collaboration with the GeoForschungsZentrum Potsdam (German Research Centre for Geosciences) and Israel's Geological Service, the researchers took a 21 m long sediment sample in the oasis Ein Gedi at the west bank of the Dead Sea. They then matched the fossil pollen to indicator plants for different levels of precipitation and temperature. Radiocarbon-dating was used to determine the age of the layers. "This allowed us to reconstruct the climate of the entire postglacial era," Prof. Litt reports. "This is the oldest pollen analysis that has been done on the Dead Sea to date."

In total, there were three different formations of vegetation around this salt sea. In moist phases, a lush, sclerophyll vegetation thrived as can be found today around the Mediterranean Sea. When the climate turned drier, steppe vegetation took over. Drier episodes yet were characterized by desert plants. The researchers found some rapid changes between moist and dry phases.

Transforming pollen data into climate information

The pollen data allows inferring what kinds of plants were growing at the corresponding times. Meteorologists from the University of Bonn took this paleontological data and converted it into climate information. Using statistical methods, they matched plant species with statistical parameters regarding temperature and precipitation that determine whether a certain plant can occur. "This allows us to make statements on the probable climate that prevailed during a certain period of time within the catchment area of the Dead Sea," reports Prof. Dr. Andreas Hense from the University of Bonn's Meteorological Institute.

The resilience of the resulting climate information was tested using the data on Dead Sea level fluctuations collected by their Israeli colleagues around Prof. Dr. Mordechai Stein from the Geological Services in Jerusalem. "The two independent data records corresponded very closely," explains Prof. Litt. "In the moist phases that were determined based on pollen analysis, our Israeli colleagues found that water levels were indeed rising in the Dead Sea, while they fell during dry episodes." This is plausible since the water level of a terminal lake without an outlet is exclusively determined by precipitation and evaporation.

Droughts led to the biblical exodus

According to the Bonn researchers' data, there were distinct dry phases particularly during the pottery Neolithic (about 7,500 to 6,500 years ago), as well as at the transition from the late Bronze Age to the early Iron Age (about 3,200 years ago). "Humans were also strongly affected by these climate changes," Prof. Litt summarizes the effects. The dry phases might have resulted in the Canaanites' urban culture collapsing while nomads invaded their area.

"At least, this is what the Old Testament refers to as the exodus of the Israelites to the Promised Land."

Dramatic results

In addition, this look back allows developing scenarios for potential future trends. "Our results are dramatic; they indicate how vulnerable the Dead Sea ecosystems are," says Prof. Litt. "They clearly show how surprisingly fast lush Mediterranean sclerophyll vegetation can morph into steppe or even desert vegetation within a few decades if it becomes drier." Back then, the consequences in terms of agriculture and feeding the population were most likely devastating. The researchers want to probe even further back into the climate past of the region around the Dead Sea by drilling even deeper.

Publication: Holocene climate variability in the Levant from the Dead Sea pollen record, Quaternary Science Reviews 49 (August 2012)

Contact:

Prof. Dr. Thomas Litt
Steinmann Institute for Geology, Mineralogy and Paleontology
Ph. 0228/732736
Email: t.litt@uni-bonn.de

Prof. Dr. Andreas Hense
Meteorological Institute
Ph.: 0228/735184
Email: ahense@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/207-2012
http://dx.doi.org/10.1016/j.quascirev.2012.06.012

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>