Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drastic Desertification

21.08.2012
Over the past 10,000 years, climate changes in the Dead Sea region have led to surprisingly swift desertification within mere decades.
This is what researchers from the University of Bonn and their Israeli colleagues found when analyzing pollen in sediments and fluctuations in sea levels, calling the findings 'dramatic.' They are presented in the current issue of the international geosciences journal "Quaternary Science Reviews," whose print version is published on 23 August.

The Dead Sea, a salt sea without an outlet, lies over 400 meters below sea level. Tourists like its high salt content because it increases their buoyancy. "For scientists, however, the Dead Sea is a popular archive that provides a diachronic view of its climate past," says Prof. Dr. Thomas Litt from the Steinmann-Institute for Geology, Mineralogy and Paleontology at the University of Bonn.

Using drilling cores from riparian lake sediments, paleontologists and meteorologists from the University of Bonn deduced the climate conditions of the past 10,000 years. This became possible because the Dead Sea level has sunk drastically over the past years, mostly because of increasing water withdrawals lowering the water supply.

Oldest pollen analysis

In collaboration with the GeoForschungsZentrum Potsdam (German Research Centre for Geosciences) and Israel's Geological Service, the researchers took a 21 m long sediment sample in the oasis Ein Gedi at the west bank of the Dead Sea. They then matched the fossil pollen to indicator plants for different levels of precipitation and temperature. Radiocarbon-dating was used to determine the age of the layers. "This allowed us to reconstruct the climate of the entire postglacial era," Prof. Litt reports. "This is the oldest pollen analysis that has been done on the Dead Sea to date."

In total, there were three different formations of vegetation around this salt sea. In moist phases, a lush, sclerophyll vegetation thrived as can be found today around the Mediterranean Sea. When the climate turned drier, steppe vegetation took over. Drier episodes yet were characterized by desert plants. The researchers found some rapid changes between moist and dry phases.

Transforming pollen data into climate information

The pollen data allows inferring what kinds of plants were growing at the corresponding times. Meteorologists from the University of Bonn took this paleontological data and converted it into climate information. Using statistical methods, they matched plant species with statistical parameters regarding temperature and precipitation that determine whether a certain plant can occur. "This allows us to make statements on the probable climate that prevailed during a certain period of time within the catchment area of the Dead Sea," reports Prof. Dr. Andreas Hense from the University of Bonn's Meteorological Institute.

The resilience of the resulting climate information was tested using the data on Dead Sea level fluctuations collected by their Israeli colleagues around Prof. Dr. Mordechai Stein from the Geological Services in Jerusalem. "The two independent data records corresponded very closely," explains Prof. Litt. "In the moist phases that were determined based on pollen analysis, our Israeli colleagues found that water levels were indeed rising in the Dead Sea, while they fell during dry episodes." This is plausible since the water level of a terminal lake without an outlet is exclusively determined by precipitation and evaporation.

Droughts led to the biblical exodus

According to the Bonn researchers' data, there were distinct dry phases particularly during the pottery Neolithic (about 7,500 to 6,500 years ago), as well as at the transition from the late Bronze Age to the early Iron Age (about 3,200 years ago). "Humans were also strongly affected by these climate changes," Prof. Litt summarizes the effects. The dry phases might have resulted in the Canaanites' urban culture collapsing while nomads invaded their area.

"At least, this is what the Old Testament refers to as the exodus of the Israelites to the Promised Land."

Dramatic results

In addition, this look back allows developing scenarios for potential future trends. "Our results are dramatic; they indicate how vulnerable the Dead Sea ecosystems are," says Prof. Litt. "They clearly show how surprisingly fast lush Mediterranean sclerophyll vegetation can morph into steppe or even desert vegetation within a few decades if it becomes drier." Back then, the consequences in terms of agriculture and feeding the population were most likely devastating. The researchers want to probe even further back into the climate past of the region around the Dead Sea by drilling even deeper.

Publication: Holocene climate variability in the Levant from the Dead Sea pollen record, Quaternary Science Reviews 49 (August 2012)

Contact:

Prof. Dr. Thomas Litt
Steinmann Institute for Geology, Mineralogy and Paleontology
Ph. 0228/732736
Email: t.litt@uni-bonn.de

Prof. Dr. Andreas Hense
Meteorological Institute
Ph.: 0228/735184
Email: ahense@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/207-2012
http://dx.doi.org/10.1016/j.quascirev.2012.06.012

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>