Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering Chile’s hidden water treasures – rock glaciers

20.06.2011
A joint research project of the University of Waterloo in Canada and the Universidad Mayor in Chile has been investigating ways to accurately identify rock glaciers.

The world’s fresh water is stored and transported by a range of natural reservoirs and formations – streams, rivers, lakes, bogs, aquifers, glaciers, icebergs, clouds and highland mists, and of course, plants and animals. Another important yet poorly understood source of fresh water is rock glaciers. Geographers and hydrologists distinguish these frozen, debris-covered formations from ice-only glaciers.

A joint research project of the University of Waterloo in Canada and the Universidad Mayor in Chile has been investigating ways to accurately identify rock glaciers. The research collaboration, feeding into a broader effort in Chile and elsewhere, draws on Canadian expertise in physical geography and computer modelling and Chilean expertise in remote sensing.

Accurate identification of rock glaciers will provide better technical information to Chilean government scientists responsible for natural resource management and environmental assessments in the dry Andes, as well as to environmental NGOs. This step is particularly important in view of a 2008 Chilean law that requires environmental assessments of development projects in mountain areas – projects such as mining, disposal of mining tailings and road construction. Some such activities have caused friction in the past between mining firms and environmentalists.

But the potential long-term spillover benefits to other countries with rock glaciers, such as Argentina, and other regions, such as Central Asia, are significant too, says University of Waterloo geographer Alex Brenning. Argentina has a larger total area of rock glaciers, and it too has new glacier-related legislation; enforcing the new law will require accurate data on the extent of rock glaciers and their ice content.

Dr. Brenning describes the elusive aspect of rock glaciers: “You see absolutely nothing of all the ice that is on the ground. This means the research methods for investigating rock glaciers are very different from what’s used in glaciological research... so rock glaciers are not usually included in glacier inventories. Even now there’s very little knowledge about their distribution in many mountain areas of the world, except maybe the Alps and the Rocky Mountains."

What masks the ice of a rock glacier is the so-called “active layer” of rock, usually three- to-five metres thick. Visually, the formation resembles regular non-glacial terrain or permafrost. Since rock glaciers are a major source of water in the dry Andes, especially through seasonal melting, they need to be protected like other water resources. But to do so, their number, sizes and locations need to be spelled out.

This is where the work of Marco Peña comes in. Mr. Peña is a specialist in applied remote sensing with the Centre for Studies in Natural Resources (OTERRA) at the Universidad Mayor in Santiago. He’s investigating techniques that can distinguish between rock glaciers and other land formations. Two promising approaches, he notes, are thermal inertia analysis and hyperspectral analysis, drawing on certain kinds of satellite images.

The thermal inertia method uses images of a mountain area taken at those times of the day when maximum and minimum temperatures are reached. “Thermal inertia depicts the response of a material to temperature changes,” explains Mr. Peña. “By calculating thermal inertia we are able to find differences between rock glaciers and their surrounding areas.”

Even though rock glacier materials may look like the surrounding material, the temperature of both landforms may be different because the rock glacier contains ice as well as rock, he says. Thus they have distinctive thermal and radiative properties that can be used to identify them.

Hyperspectral analysis relies on images taken by Hyperion, an instrument aboard NASA’s EO-1satellite that has been collecting data about the earth since 1999. Mr. Peña hypothesizes that rock glaciers are spectrally different from surrounding materials. Again, the key is to find tell-tale signs of rock glaciers, in this case various combinations of elements in the surface of the target area that has been imaged. Hyperspectral analysis reveals more about a surface than other remote sensing techniques, due to the detailed spectral information available in each pixel of an image.

“We want to demonstrate to the remote sensing community that there is a close relationship between remote sensing and rock glaciers if proper, remotely sensed products are combined with field data,” says Mr. Peña. To this end, researchers staged a one-day seminar on the topic at Universidad Mayor a year ago, bringing together 27 students, university researchers, mining industry representatives, consultants, and staff from Chile’s national water authority.

Dr. Brenning stresses that global warming could have a significant impact on rock glaciers in many regions and thus on the world supply of fresh water in the form of ice. Hence, the importance of building rock glacier inventories now – not only to support environmental impact assessment for specific projects, but also for the long-term knowledge base needed to help protect vital water resources.

Glacier science was in the news recently, as Dr. Brenning was interviewed by Chilean and international media on the importance of rock glaciers. Because of his expertise, he was also asked to join a scientific group advising Chile’s national environmental protection agency on implementing its National Glacier Policy. He plans to spend part of 2011 working in Chile.

The collaboration between Dr. Brenning, Mr. Peña and participating researchers and graduate students was funded by Canada’s International Development Research Centre (IDRC) under the Canada-Latin America and the Caribbean Research Exchange Grants (LACREG) program. Managed by the Association of Universities and Colleges of Canada, the grants program stimulates research networking in the areas of IDRC focus: agriculture and environment; information and communication technologies for development; innovation, policy and science; and social and economic policy. Program funding for the LACREG rock glacier collaboration was nearly $8,500.

Written by Gerry Toomey

This article first appeared in the Spring 2011 edition of UniWorld, a publication of the Association of Universities and Colleges of Canada’s Partnership Programs Division.

Isabelle Bourgeault-Tassé | Research asia research news
Further information:
http://publicwebsite.idrc.ca/EN/Programs/Canadian_Partnerships/Pages/ArticleDetails.aspx?PublicationID=857
http://www.researchsea.com

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>