Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dirty snow causes early runoff in Cascades, Rockies

13.01.2009
Part of the changing climate, earlier spring snowmelt could affect hydropower generation, agriculture

Soot from pollution causes winter snowpacks to warm, shrink and warm some more.

This continuous cycle sends snowmelt streaming down mountains as much as a month early, a new study finds. How pollution affects a mountain range's natural water reservoirs is important for water resource managers in the western United States and Canada who plan for hydroelectricity generation, fisheries and farming.

Scientists at the Department of Energy's Pacific Northwest National Laboratory conducted the first-ever study of soot on snow in the western states at a scale that predicted impacts along mountain ranges. They found that soot warms up the snow and the air above it by up to 1.2 degrees Fahrenheit, causing snow to melt.

"If we can project the future -- how much water we'll be getting from the rivers and when -- then we can better plan for its many uses," said atmospheric scientist Yun Qian. "Snowmelt can be up to 75 percent of the water supply, in some regions. These changes can affect the water supply, as well as aggravate winter flooding and summer droughts."

The soot-snow cycle starts when soot, a byproduct of burning fossil fuels, darkens snow it lands upon, which then absorbs more of the sun's energy than clean white snow. The resulting thinner snowpack reflects less sunlight back into the atmosphere and further warms the area, continuing the snowmelt cycle.

This study revealed regional changes to the snowpack caused by soot, whereas other studies looked at the uniform changes brought by higher air temperatures due to greenhouse gases.

Previous studies have examined the effect of airborne or snowbound soot on global climate and temperatures. Qian and his colleagues at PNNL used a climate computer model to zoom in on the Rocky Mountain, Cascade, and other western United States mountain ranges. They modeled how soot from diesel engines, power plants and other sources affected snowpacks it landed on.

They found that changes to snow's brightness results in its melting weeks earlier in spring than with pristine snow. In addition, less mountain snow going into late spring means reduced runoff in late spring and summer. They will report their findings in an upcoming issue of the Journal of Geophysical Research -- Atmospheres.

Making Snowhills from Mountains

Researchers know that soot settles on snow. And like an asphalt street compared to a concrete sidewalk, dirty snow retains more heat from the sun than bright white snow. Qian and colleagues wanted to determine to what degree dark snow contributes to the declining snowpack.

To get the kind of detail from their computer model that they needed, the PNNL team used a regional model called the Weather Research and Forecasting model -- or WRF, developed in part at the National Center for Atmospheric Research in Boulder, Colo. Compared to planet-scale models that can distinguish land features 200 kilometers apart, this computer model zooms in on the landscape, increasing resolution to 15 kilometers. At 15 kilometers, features such as mountain ranges and soot deposition are better defined.

Recently, PNNL researchers added a software component to WRF that models the chemistry of tiny atmospheric particles called aerosols and their interaction with clouds and sunlight. Using the WRF-chem model, the team first examined how much soot in the form of so-called black carbon would land on snow in the Sierra Nevada, Cascade and Rocky Mountains.

Then the team simulated how that soot would affect the snow's brightness throughout the year. Finally, they translated the brightness into snow accumulation and melting over time.

Gray Outlook

"Earlier studies didn't talk about snowpack changes due to soot for two reasons," said atmospheric scientist and co-author William Gustafson. "Soot hasn't been widely measured in snowpack, and it's hard to accurately simulate snowpack in global models. The Cascades have lost 60 percent of their snowpack since the 1950s, most of that due to rising temperatures. We wanted to see if we could quantify the impact of soot."

Their simulations compared well to data collected on snowpack distribution and water runoff. But their first experiment did not include all sources of soot, so they modeled what would happen if enough soot landed on snow to double the loss of brightness. In this computer simulation, the regional climate and snowpack changed significantly, and not in a simply predictable way.

Overall, doubling the dimming of the snow did not lead to twice as high temperature changes -- it led to an approximate 50 percent increase in the snow surface temperature. The drop in snow accumulation, however, more than doubled in some areas. Snowpack over the central Rockies and southern Alberta, for example, dropped two to 50 millimeters over the mountains during late spring and early winter. The most drastic changes occurred in March, the model showed.

The team also found that soot decreased snow's brightness in two ways. About half of soot's effect came from its dark color. The other half came indirectly from reducing the size of the snowpack, exposing the underlying darker earth.

Studies like this one start to unmask pollution's role in the changing climate. While greenhouse gases work unseen, soot bares its dark nature, with a cloak that slowly steals summertime's snow.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov
http://www.agu.org/contents/journals/ViewPapersInPress.do?journalCode=JD

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>