Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digging Deeper Below Antarctica's Lake Vida

16.09.2009
Antarctica's Lake Vida, a geologic curiosity that is essentially an ice bottle of brine, is home to some of the oldest and coldest living organisms on Earth.

Perpetually covered by more than 60 feet of ice, the brine below -- water that is five to seven times more salty than seawater -- has been found to be home to cryobiological microbes some 2,800 years old which were revived after a gradual thaw.

That widely reported finding came in 2002 from Peter Doran, associate professor of earth and environmental sciences at the University of Illinois at Chicago. But the discovery raised many new questions. Now, Doran and his department colleague Fabien Kenig with collaborators from the Nevada-based Desert Research Institute will return to Lake Vida late next year for more exploration, funded by a $1.1 million National Science Foundation grant.

Doran and Kenig plan to perform the first-ever drilling entirely through Lake Vida's thick ice cap, into the brine, and down into sediment below, retrieving about 10 feet or more of core sample for analysis.

"The main goal is to get into that brine pocket and the sediment beneath it to both document and define the ecosystem that's there today, and the history of that ecosystem," Doran said.

The sediment samples could yield clues about life in such an extreme environment dating back thousands of years, which could help geoscientists draw a better picture of processes that occur as the Earth moves into colder periods.

"If we took, for example, a Wisconsin lake and started turning the temperatures down during a climatic downturn, what is the impact on the lake's ecosystem and what strategies are used by living things to survive this extremely cold brine?" Doran said of the salty liquid that hovers around 10 degrees Fahrenheit year-round. "There are few examples on Earth of things shown to live in that water temperature."

A University of Wisconsin group will drill the ice hole, but special care will be required in preparing the site. A tent will be partitioned to provide both a drilling site cover and adjacent laboratory to analyze samples. It will be sort of like setting up a hospital operating room in the Antarctic cold, with the drill requiring the sanitary cleanliness of a surgeon's scalpel to prevent any surface contaminants from ruining samples.

Kenig, an organic geochemist, will study the lake's carbon and organic chemistry as well as molecular fossils in the sediment core. These preserved organic compounds will point to changes in the ecosystem as the lake froze.

"As this environment was isolated for some time, we need to be very cautious not to introduce any external elements that could bias our samples," Kenig said. To assure sample purity, nothing plastic or rubber will be used in the drilling and all equipment penetrating the lake water and sediment will be sterilized.

While specially preserved samples will be shipped back to UIC and the Desert Research Institute for later analysis, some work, such as microbial counts, will be done on site. Doran's previous on-site research at Lake Vida found in the ice the highest concentration of nitrous oxide -- "laughing gas" -- of any ecosystem on Earth. It was a clue that would make any scientist smile.

"This gas is produced by microbes," Doran said. "That was a hint that we had a viable ecosystem there."

The NSF award is funded under the federal government's economic stimulus plan, the American Recovery and Reinvestment Act of 2009.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>