Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digging Deeper Below Antarctica's Lake Vida

16.09.2009
Antarctica's Lake Vida, a geologic curiosity that is essentially an ice bottle of brine, is home to some of the oldest and coldest living organisms on Earth.

Perpetually covered by more than 60 feet of ice, the brine below -- water that is five to seven times more salty than seawater -- has been found to be home to cryobiological microbes some 2,800 years old which were revived after a gradual thaw.

That widely reported finding came in 2002 from Peter Doran, associate professor of earth and environmental sciences at the University of Illinois at Chicago. But the discovery raised many new questions. Now, Doran and his department colleague Fabien Kenig with collaborators from the Nevada-based Desert Research Institute will return to Lake Vida late next year for more exploration, funded by a $1.1 million National Science Foundation grant.

Doran and Kenig plan to perform the first-ever drilling entirely through Lake Vida's thick ice cap, into the brine, and down into sediment below, retrieving about 10 feet or more of core sample for analysis.

"The main goal is to get into that brine pocket and the sediment beneath it to both document and define the ecosystem that's there today, and the history of that ecosystem," Doran said.

The sediment samples could yield clues about life in such an extreme environment dating back thousands of years, which could help geoscientists draw a better picture of processes that occur as the Earth moves into colder periods.

"If we took, for example, a Wisconsin lake and started turning the temperatures down during a climatic downturn, what is the impact on the lake's ecosystem and what strategies are used by living things to survive this extremely cold brine?" Doran said of the salty liquid that hovers around 10 degrees Fahrenheit year-round. "There are few examples on Earth of things shown to live in that water temperature."

A University of Wisconsin group will drill the ice hole, but special care will be required in preparing the site. A tent will be partitioned to provide both a drilling site cover and adjacent laboratory to analyze samples. It will be sort of like setting up a hospital operating room in the Antarctic cold, with the drill requiring the sanitary cleanliness of a surgeon's scalpel to prevent any surface contaminants from ruining samples.

Kenig, an organic geochemist, will study the lake's carbon and organic chemistry as well as molecular fossils in the sediment core. These preserved organic compounds will point to changes in the ecosystem as the lake froze.

"As this environment was isolated for some time, we need to be very cautious not to introduce any external elements that could bias our samples," Kenig said. To assure sample purity, nothing plastic or rubber will be used in the drilling and all equipment penetrating the lake water and sediment will be sterilized.

While specially preserved samples will be shipped back to UIC and the Desert Research Institute for later analysis, some work, such as microbial counts, will be done on site. Doran's previous on-site research at Lake Vida found in the ice the highest concentration of nitrous oxide -- "laughing gas" -- of any ecosystem on Earth. It was a clue that would make any scientist smile.

"This gas is produced by microbes," Doran said. "That was a hint that we had a viable ecosystem there."

The NSF award is funded under the federal government's economic stimulus plan, the American Recovery and Reinvestment Act of 2009.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>