Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Simulates Deep-Sea Floor Conditions in Lab

27.01.2010
Understanding how deep-sea floor rocks and sediments interact with surrounding fluids and gasses is difficult to access. But a device created by two University of Illinois at Chicago geoscientists will duplicate extreme sea floor conditions inside a small chamber and examine samples inside the chamber by X-rays under these harsh conditions.

"Instead of going down to the abyssal plain of the ocean floor, we're bringing it to the lab," said Stephen Guggenheim, professor of earth and environmental sciences at UIC.

Guggenheim and emeritus professor Gus Koster van Groos say their high-pressure environmental chamber can simulate deep-sea pressure to 1,000 atmospheres -- comparable to deeper parts of the ocean -- and at temperatures from zero to 200 degrees Celsius.

The two began earlier prototypes of their device about a decade ago, improving it by trying different technologies and using more durable metals for the pressure vessel. X-ray diffraction is used to determine the composition of the materials reacting in the chamber and to study the effect of the sea floor environment. An inline mixing pump keeps suspensions mixed and in equilibrium.

Guggenheim said it is the first device to successfully obtain X-ray data under such severe conditions.

A new National Science Foundation grant will let the UIC scientists modify and improve their device, adding injection and extraction valves to facilitate sample manipulation.

"We'll be able to duplicate very precisely what happens on the ocean floor," said Koster van Groos. "We'll see minerals interaction with sea water and with gasses we can add, such as carbon dioxide or methane. And we can run experiments over longer terms, even for several months, to see what happens."

Guggenheim and Koster van Groos said their device may be used to study whether long-term, deep underground sequestering of excess carbon dioxide can be done safely. Carbon sequestration is under consideration as a way to combat global warming.

Guggenheim said engineers he's talked with say the device may be used for a variety of applications, such as examining the interaction between various materials and caustic acids.

"What's both unique and interesting is that you can look at the reaction while it's going on, without stopping or opening the containment vessel," he said.

Guggenheim and Koster van Groos hope their device will help scientists better understand such things as deep-sea mineral formation, clay mineralogy, mineral-brine interactions and what is going on in hydrothermal systems called black- and white-smokers.

The UIC scientists are also considering the study of organic material such as bacteria that can be introduced into their device after the injection valves are designed.

"We'd like to see how it changes the speed of reactions," said Guggenheim. "But ultimately, adding molecules from which organisms can develop might help us better understand how life evolved on the early earth."

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Earth Sciences:

nachricht Climate change: In their old age, trees still accumulate large quantities of carbon
17.08.2017 | Universität Hamburg

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>