Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Simulates Deep-Sea Floor Conditions in Lab

27.01.2010
Understanding how deep-sea floor rocks and sediments interact with surrounding fluids and gasses is difficult to access. But a device created by two University of Illinois at Chicago geoscientists will duplicate extreme sea floor conditions inside a small chamber and examine samples inside the chamber by X-rays under these harsh conditions.

"Instead of going down to the abyssal plain of the ocean floor, we're bringing it to the lab," said Stephen Guggenheim, professor of earth and environmental sciences at UIC.

Guggenheim and emeritus professor Gus Koster van Groos say their high-pressure environmental chamber can simulate deep-sea pressure to 1,000 atmospheres -- comparable to deeper parts of the ocean -- and at temperatures from zero to 200 degrees Celsius.

The two began earlier prototypes of their device about a decade ago, improving it by trying different technologies and using more durable metals for the pressure vessel. X-ray diffraction is used to determine the composition of the materials reacting in the chamber and to study the effect of the sea floor environment. An inline mixing pump keeps suspensions mixed and in equilibrium.

Guggenheim said it is the first device to successfully obtain X-ray data under such severe conditions.

A new National Science Foundation grant will let the UIC scientists modify and improve their device, adding injection and extraction valves to facilitate sample manipulation.

"We'll be able to duplicate very precisely what happens on the ocean floor," said Koster van Groos. "We'll see minerals interaction with sea water and with gasses we can add, such as carbon dioxide or methane. And we can run experiments over longer terms, even for several months, to see what happens."

Guggenheim and Koster van Groos said their device may be used to study whether long-term, deep underground sequestering of excess carbon dioxide can be done safely. Carbon sequestration is under consideration as a way to combat global warming.

Guggenheim said engineers he's talked with say the device may be used for a variety of applications, such as examining the interaction between various materials and caustic acids.

"What's both unique and interesting is that you can look at the reaction while it's going on, without stopping or opening the containment vessel," he said.

Guggenheim and Koster van Groos hope their device will help scientists better understand such things as deep-sea mineral formation, clay mineralogy, mineral-brine interactions and what is going on in hydrothermal systems called black- and white-smokers.

The UIC scientists are also considering the study of organic material such as bacteria that can be introduced into their device after the injection valves are designed.

"We'd like to see how it changes the speed of reactions," said Guggenheim. "But ultimately, adding molecules from which organisms can develop might help us better understand how life evolved on the early earth."

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>