Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danielle now a Category 2 hurricane, NASA satellites working in high gear

25.08.2010
NASA's Aqua, Terra and TRMM satellites are providing data on Hurricane Danielle daily, and forecasters are using that data to help determine Danielle's behavior and movement. At 5 p.m. EDT yesterday, August 23, when Danielle became a hurricane, these NASA satellites fed forecasters data on cloud extent and formation, cloud top temperatures, pressure, sea surface temperatures, rainfall rates within the storm and more factors.
By 5 a.m. EDT today, August 24, Danielle had reached Category 2 status on the Saffir-Simpson Scale. That means that it has maximum sustained winds between 96-110 mph (83-95 knots), and has "Extremely dangerous winds will cause extensive damage" if it impacts land areas. For more information about the Saffir-Simpson Hurricane scale, go to: http://www.nhc.noaa.gov/aboutsshws.shtml.

The Tropical Rainfall Measuring Mission satellite (TRMM) has been measuring Danielle's rainfall from space since it developed. On Monday, August 23 at 05:38 UTC (1:38 a.m. EDT) TRMM flew directly over Danielle and measured its rainfall with the TRMM Microwave Imager (TMI) instrument. At that time, there was a large area of moderate to heavy rainfall of over 50 mm/hr (~2 inches) in Danielle around it's center. The rainfall images are at NASA's Goddard Space Flight Center in Greenbelt, Md.

On August 23 at 16:17 UTC (12:17 p.m. EDT) an infrared image of Hurricane Danielle's clouds from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite showed a tightly compact cyclone. The strongest convection and thunderstorms appeared as a large circle in the inside of the storm. The thunderstorms were so high, and powerful that the infrared data measured their temperatures as cold as or colder than -63 Fahrenheit. NASA's Jet Propulsion Laboratory in Pasadena, Calif. creates the images from the AIRS instrument.

Another instrument on NASA's Aqua satellite helped find the center of Danielle early this morning. At 04:34 UTC (12:34 a.m. EDT), Danielle's eye (that developed yesterday) was no longer evident, indicating that it was obscured by clouds. Using the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument that flies on Aqua, microwave imagery helped locate the center and confirmed that Danielle's center was just left of the previous estimate.

One hour and fifteen minutes after Aqua's AIRS instrument captured an infrared image, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured a high-resolution visible image of Danielle. MODIS images are created by the MODIS Rapid Response Team at NASA Goddard. The data that was captured on August 23 at 1:50 p.m. EDT also showed a compact, rounded, tropical storm Danielle. Danielle became a hurricane just over three hours later.

At 5 a.m. EDT on August 24, Danielle became a category 2 hurricane with maximum sustained winds of 100 mph. Hurricane-force winds currently extend 30 miles out from the center, while tropical storm-force winds extend 115 miles from the center.

Danielle is moving west at 20 mph, and was still far away from land areas. Danielle's center was located about 1,110 miles east of the Lesser Antilles near 15.9 North and 44.6 West. A turn toward the west-northwest and then northwest is expected by early Wednesday, according to the National Hurricane Center, Miami, Fla. Danielle's estimated minimum central pressure is 973 millibars.

Global computer models show Danielle remaining in an environment with low vertical wind shear for the next 24 hours over warm water temperatures between 28 and 29 Celsius (82 and 84 FahreLow wind shear and warm waters help power a tropical cyclone (the general name for tropical depressions, tropical storms and hurricanes). Those factors are expected to help Danielle continue to intensify over the next 24 hours, so Danielle could become a major hurricane (Category 3) by Wednesday, August 25.

For all tropical cyclone updates from NASA's Hurricane page: www.nasa.gov/hurricane

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/hurricane

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>