Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Daily record high temperatures occurred twice as often as record lows over past decade

13.11.2009
Spurred by a warming climate, daily record high temperatures occurred twice as often as record lows over the last decade across the continental United States, new research shows.

The ratio of record highs to lows is likely to increase dramatically in coming decades if emissions of greenhouse gases continue to climb.

"Climate change is making itself felt in terms of day-to-day weather in the United States," says Gerald Meehl, a researcher at the National Center for Atmospheric Research (NCAR) and the lead author of the study. "The ways these records are being broken show how our climate is already shifting."

The study, by authors at NCAR, Climate Central, The Weather Channel, and the National Oceanic and Atmospheric Administration (NOAA), has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

If temperatures were not warming, the number of record daily highs and lows being set each year would be approximately even.

Instead, for the period from January 1, 2000, to September 30, 2009, the continental United States set 291,237 record highs and 142,420 record lows, as the country experienced unusually mild winter weather and intense summer heat waves.

A record daily high means that temperatures were warmer on a given day than on that same date throughout a weather station's history.

The authors used a quality control process to ensure the reliability of data from thousands of weather stations across the country, while looking at data over the past six decades to capture longer-term trends.

This decade's warming was more pronounced in the western United States, where the ratio was more than two to one, than in the eastern United States, where the ratio was about one-and-a-half to one.

The study also found that the two-to-one ratio across the country as a whole could be attributed more to a comparatively small number of record lows than to a large number of record highs.

This indicates that much of the nation's warming is occurring at night, when temperatures are dipping less often to record lows.

This finding is consistent with years of climate model research showing that higher overnight lows should be expected with climate change.

In addition to surveying actual temperatures in recent decades, Meehl and his co-authors turned to a sophisticated computer model of global climate to determine how record high and low temperatures are likely to change during the course of this century.

The modeling results indicate that, if nations continue to increase their emissions of greenhouse gases in a "business as usual" scenario, the U.S. ratio of daily record high to record low temperatures would increase to about 20-to-1 by mid-century and 50-to-1 by 2100.

The mid-century ratio could be much higher if emissions rose at an even greater pace, or it could be about 8-to-1 if emissions were reduced significantly, the model showed.
The authors caution that such predictions are, by their nature, inexact.
Climate models are not designed to capture record daily highs and lows with precision, and it remains impossible to know future human actions that will determine the level of future greenhouse gas emissions.

The model used for the study, the NCAR-based Community Climate System Model, correctly captured the trend toward warmer average temperatures and the greater warming in the West, but overstated the ratio of record highs to record lows in recent years.

However, the model results are important because they show that, in all likely scenarios of future greenhouse gas emissions, record daily highs should increasingly outpace record lows over time.

"If the climate weren't changing, you would expect the number of temperature records to diminish significantly over time," says Claudia Tebaldi, a statistician with Climate Central who is one of the paper's co-authors.

"As you measure the high and low daily temperatures each year, it normally becomes more difficult to break a record after a number of years. But as the average temperatures continue to rise this century, we will keep setting more record highs."

The study team focused on weather stations that have been operating since 1950. They found that the ratio of record daily high to record daily low temperatures slightly exceeded one to one in the 1950s, dipped below that level in the 1960s and 1970s, and has risen since the 1980s.

The results reflect changes in U.S. average temperatures, which rose in the 1950s, stabilized in the 1960s, and then began a warming trend in the late 1970s.

Even in the first nine months of this year, when the United States cooled somewhat after a string of unusually warm years, the ratio of record daily high to record daily low temperatures was more than three to two.

Despite the increasing number of record highs, there will still be occasional periods of record cold, Meehl notes.

"One of the messages of this study is, you still get cold days," Meehl says. "Winter still comes. Even in a much warmer climate, we're setting record low minimum temperatures on a few days each year. But the odds are shifting so there's a much better chance of daily record highs instead of lows."

The study team analyzed several million daily high and low temperature readings taken over the span of six decades at about 1,800 weather stations across the country, thereby ensuring ample data for statistically significant results.

The readings, collected at the National Oceanic and Atmospheric Administration's National Climatic Data Center, undergo a quality control process at the data center that looks for such potential problems as missing data as well as inconsistent readings caused by changes in thermometers, station locations, or other factors.

Meehl and his colleagues then used temperature simulations from the Community Climate System Model to compute daily record highs and lows under current and future atmospheric concentrations of greenhouse gases.

The study was funded by the National Science Foundation (NSF), NCAR's sponsor, and by the Department of Energy and Climate Central.

Title:
"The relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S.""
Authors:
Gerald A. Meehl and Larry McDaniel: National Center for Atmospheric Research+, Boulder, CO, USA;

Claudia Tebaldi: Climate Central, Princeton, N.J., USA;

Guy Walton: The Weather Channel, Atlanta, GA, USA;

David Easterling: National Climate Data Center, Asheville, NC, USA.

Contact information for the authors:
Gerald Meehl, NCAR Scientist. Tel: +1 (303) 497-1331, email:
meehl@ncar.ucar.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>