Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coral dating method hints at possible future sea-level changes

12.09.2011
New evidence of sea-level oscillations during a warm period that started about 125,000 years ago raises the possibility of a similar scenario if the planet continues its more recent warming trend, says a research team led by the Woods Hole Oceanographic Institution (WHOI).

In a paper published online in the Sept. 11 Nature Geoscience, the researchers report data from an improved method of dating fossil coral reef skeletons in the Bahamas. By calculating more accurate ages for the coral samples than previously possible, they found that sea levels were considerably less stable than earlier believed--oscillating up and down by 4 to 6 meters (13-20 feet) over a few thousand years about 120,000 years ago during a period known as the Last Interglacial.

"This was the last time that climate was as warm as—or warmer than—today," said WHOI geochronologist William G. Thompson, lead author of the study. "If today's ice sheets continue to melt, we may be headed for a period of ice sheet and sea-level change that is more dynamic than current observations of ice sheets suggest."

The polar ice caps currently are shrinking and sea level is rising at a rate of about 30 centimeters (one foot) per century. "How much sea level will rise over the next century or two is a crucial question for the significant part of the world's population that lives in coastal zones," Thompson said.

A better understanding of sea-level change in the past can help to inform predictions for the future. Historical records such as those from tide gauges extend back only a century or so. "The geological record offers a longer perspective on rates of change," Thompson said, "and sea-level changes during previous warm intervals are especially relevant to today's situation." Sea levels during the Last Interglacial are known to have been about 6 meters (20 feet) higher, on average, than they are today. "The real surprise is that sea levels were oscillating during this period."

To get more accurate age estimates from the geological record, Thompson developed an advanced way of interpreting the uranium and thorium isotope ratios that have been traditionally used as a coral dating method. Until now, scientists attempting to date Last Interglacial coral reefs concluded erroneously that sea level was relatively stable during this period. "Our analysis of Last Interglacial fossil reef ages represents a breakthrough in our understanding of U-Th coral dating, leading to improved chronologies of past sea-level change," Thompson said.

Thompson teamed up with colleagues H. Allen Curran and Brian White of Smith College, and Mark A. Wilson of the College of Wooster, experts on the key Bahamas fossil coral sites. "The geologic evidence for sea-level change at these sites is convincing," said Curran, "but we couldn't absolutely prove sea-level oscillation without more precise dating."

Because coral reefs grow near the sea surface, they are accurate markers of former sea levels. Two fossil reefs are evident at the Bahamas sites, separated by an erosional surface that was cut by wave action. The first reef grew when sea levels were about 4 meters (13 feet) higher than today. "The fall of sea-level is indicated by the wave-cut erosion of this first reef," said Wilson, "and the second sea-level rise was recorded by the growth of new corals on this eroded surface. The dating of fossil corals below and above this erosional surface, using our new methods, reveals important details about the timing of sea-level change that were previously obscured."

The finding of a significant sea-level oscillation 120,000 years ago is in sharp contrast to the last 5,000 years, where sea level has been relatively stable. "It appears that the smaller ice sheets of the Last Interglacial were significantly less stable than today's ice sheets," Thompson said.

Should the current warming trend continue, Thompson said, a scenario similar to that of the Last Interglacial could result. "Variable sea level during the Last Interglacial points to instability in the polar ice sheets, which were somewhat smaller than today. If changing climate leads to smaller ice sheets in the future, this may provoke similar instability."

The work was supported by the WHOI Ocean and Climate Change Institute, the Comer Science and Education Foundation, and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>