Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continuous satellite monitoring of ice sheets needed to better predict sea-level rise

15.07.2013
The findings, published in Nature Geoscience, underscore the need for continuous satellite monitoring of the ice sheets to better identify and predict melting and the corresponding sea-level rise.

The ice sheets covering Antarctica and Greenland contain about 99.5 per cent of the Earth's glacier ice which would raise global sea level by some 63m if it were to melt completely. The ice sheets are the largest potential source of future sea level rise – and they also possess the largest uncertainty over their future behaviour.

They present some unique challenges for predicting their future response using numerical modelling and, as a consequence, alternative approaches have been explored. One common approach is to extrapolate observed changes to estimate their contribution to sea level in the future.

Since 2002, the satellites of the Gravity Recovery and Climate Experiment (GRACE) detect tiny variations in Earth's gravity field resulting from changes in mass distribution, including movement of ice into the oceans. Using these changes in gravity, the state of the ice sheets can be monitored at monthly intervals.

Dr Bert Wouters, currently a visiting researcher at the University of Colorado, said: "In the course of the mission, it has become apparent that ice sheets are losing substantial amounts of ice – about 300 billion tonnes each year – and that the rate at which these losses occurs is increasing. Compared to the first few years of the GRACE mission, the ice sheets' contribution to sea level rise has almost doubled in recent years."

Yet, there is no consensus among scientists about the cause of this recent increase in ice sheet mass loss observed by satellites. Beside anthropogenic warming, ice sheets are affected by many natural processes, such as multi-year fluctuations in the atmosphere (for example, shifting pressure systems in the North Atlantic, or El Niño and La Niña events) and slow changes in ocean currents.

"So, if observations span only a few years, such 'ice sheet weather' may show up as an apparent speed-up of ice loss which would cancel out once more observations become available," Dr Wouters said.

The team of researchers compared nine years of satellite data from the GRACE mission with reconstructions of about 50 years of mass changes to the ice sheets. They found that the ability to accurately detect an accelerating trend in mass loss depends on the length of the record.

At the moment, the ice loss detected by the GRACE satellites is larger than what we would expect to see just from natural fluctuations, but the speed-up of ice loss over the last years is not.

The study suggests that although there may be almost enough satellite data to detect a speed-up in mass loss of the Antarctic ice sheet with a reasonable level of confidence, another ten years of satellite observations is needed to do so for Greenland. As a result, extrapolation of the current contribution to sea-level rise of the ice sheets to 2100 may be too high or low by as much as 35 cm. The study, therefore, urges caution in extrapolating current measurements to predict future sea-level rise.

Paper

'Limits in detecting acceleration of ice sheet mass loss due to climate variability' by B.Wouters, J. L. Bamber, M. R. van den Broeke, J. T. M. Lenaerts and I. Sasgen in Nature Geoscience

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>