Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Continents as a Heat Blanket

23.01.2009
Drifting of the large tectonic plates and the superimposed continents is not only powered by the heat-driven convection processes in the Earth’s mantle, but rather retroacts on this internal driving processes.

In doing so, the continents function as a thermal blanket, which leads to an accumulation of heat underneath, and which in turn can cause the break-up of the super-continents.

These results of numerical modelling have been published by scientists from the GFZ German Research Centre for Geosciences in the latest volume of the journal „Physics of the Earth and Planetary Interiors“ (Vol. 171, S. 313-322).

Alfred Wegener’s theory of continental drift was turned up when the driving forces for continental drift were discovered during the 50s and 60s: The enormous heat in the Earth’s core and Earth’s mantle generates the flow of rocks within the Earth’s mantle, a process similar to the movement of warm water in a cooking pot. This heat-driven mass transport is called convection. On the Earth’s surface, this process leads not only to plate movement but also to drifting of the continents floating on the plates.

To date however, there has been no realistic mathematical–physical theory describing the interaction between the convective movement in the Earths mantle and the continental drift. V. Trubitsin, M. Kaban und M. Rothacher from the GFZ have now developed a numerical model, based on the current position of the continents, the structures of the Earth’s mantle obtained through geophysical measurements, and the current displacement rates on the surface. Hence they were able to calculate the future position of the continents in hundreds of millions of years.

It could be shown that the enormous heat in the Earth’s interior does not generally lead to a chaotic mass transport within the Earth’s mantle. On the contrary, the continents influence the heat distribution within the Earth’s mantle and the associated convective mass flow. In other words the continents act as a thermal blanket causing heat to accumulate beneath. A self-regulating system develops, beginning and ending with a super-continent. This super-continent breaks apart due to heat accumulation which in turn leads to a reorganoization of mantle convection with the pieces ultimately joining again to form a large super-continent.

Franz Ossing | alfa
Further information:
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>