Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clustered hurricanes reduce impact on ecosystems

18.10.2011
New research has found that hurricane activity is 'clustered' rather than random, which has important long-term implications for coastal ecosystems and human population.

The research was carried out by Professor Peter Mumby from The University of Queensland Global Change Institute and School of Biological Sciences, Professor David Stephenson and Dr Renato Vitolo (Willis Research Fellow) at the University of Exeter's Exeter Climate Systems research centre.

Tropical cyclones and hurricanes have a massive economic, social and ecological impact, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning.

Understanding how the frequency of hurricanes varies is important for the people that experience them and the ecosystems that are impacted by hurricanes.

The findings published in the journal Proceedings of the National Academy of Sciences USA map the variability in hurricanes throughout the Americas using a 100-year historical record of hurricane tracks.

Short intense periods of hurricanes followed by relatively long quiet periods, were found around the Caribbean Sea and the clustering was particularly strong in Florida, the Bahamas, Belize, Honduras, Haiti and Jamaica.

Modelling of corals reefs of the Caribbean found that clustered hurricanes are 'better' for coral reef health than random hurricane events as the first hurricane always causes a lot of damage but then those storms that follow in quick succession don't add much additional damage as most of the fragile corals were removed by the first storm.

The following prolonged period without hurricanes allows the corals to recover and then remain in a reasonable state prior to being hit by the next series of storms.

It is important to consider the clustered nature of hurricane events when predicting the impacts of storms and climate change on ecosystems. For coral reefs, forecasts of habitat collapse were overly pessimistic and have been predicted at least 10 years too early as hurricanes were assumed to occur randomly over time, which is how most research projects model the incidence of future hurricanes.

'Cyclones have always been a natural part of coral reef lifecycles', says study author Professor Peter Mumby. 'However, with the additional stresses people have placed upon ecosystems like fishing, pollution and climate change, the impacts of cyclones linger a lot longer than they did in the past.'

Mumby adds, 'If we are to predict the future of coral reefs it's really important to consider the clustering of cyclone events. For a given long term rate of hurricanes (e.g., once per decade), clustered events are less damaging.'

Clustering of storms and other weather events is a global phenomenon that needs to be better quantified statistically in risk assessments' says study author Professor David Stephenson. 'We didn't at first expect clustering to have advantages but this study has clearly shown that clustering can help by giving ecosystems more time to recover from natural catastrophes'

Professor Stephenson adds, 'This research also has wider implications for other systems such as the dynamics and viability of insurance companies and the provision of reinsurance protection.'

"Reinsurance companies are a bit like ecosystems and so need time to recover after major losses - so clustering of hurricanes allows the industry to build profits before the next cluster of storm losses. They are different from corals in that they actually need a few hurricanes for them to be able to grow." Said Professor Stephenson.

Peter Mumby is Professor of marine ecology and heads the Healthy Oceans program at the Global Change Institute, University of Queensland, Brisbane, Australia.

David Stephenson is Professor of statistical climatology at the University of Exeter and a founding member of the Willis Research Network (www.willisresearchnetwork.com), the research arm of Willis Re which kindly helped fund the research at Exeter.

About the Global Change Institute

The Global Change Institute at The University of Queensland, Australia, is a new source of game-changing research, ideas and advice for addressing the challenges of global change. The Global Change Institute advances discovery, creates solutions and advocates changes to policies that respond to challenges presented by climate change, technological innovation and population change.

About Exeter Climate Systems

Exeter Climate Systems (XCS) (www1.secam.ex.ac.uk/xcs) is a world-leading research centre formed in the mathematics research institute at the University of Exeter in 2007. XCS works at the interface of mathematical and climate sciences, and has strong partnerships with the nearby UK Met Office. Four members of staff are (coordinating) lead authors in the forthcoming IPCC report.

Peter Mumby | EurekAlert!
Further information:
http://www.uq.edu.au

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>