Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster spacecraft detects elusive space wind

02.07.2013
A new study provides the first conclusive proof of the existence of a space wind first proposed theoretically over 20 years ago.

By analysing data from the European Space Agency’s Cluster spacecraft, researcher Iannis Dandouras detected this plasmaspheric wind, so-called because it contributes to the loss of material from the plasmasphere, a donut-shaped region extending above the Earth’s atmosphere. The results are published today in Annales Geophysicae, a journal of the European Geosciences Union (EGU).

“After long scrutiny of the data, there it was, a slow but steady wind, releasing about 1 kg of plasma every second into the outer magnetosphere: this corresponds to almost 90 tonnes every day. It was definitely one of the nicest surprises I’ve ever had!” said Dandouras of the Research Institute in Astrophysics and Planetology in Toulouse, France.

The plasmasphere is a region filled with charged particles that takes up the inner part of the Earth’s magnetosphere, which is dominated by the planet’s magnetic field.

To detect the wind, Dandouras analysed the properties of these charged particles, using information collected in the plasmasphere by ESA’s Cluster spacecraft. Further, he developed a filtering technique to eliminate noise sources and to look for plasma motion along the radial direction, either directed at the Earth or outer space.

As detailed in the new Annales Geophysicae study, the data showed a steady and persistent wind carrying about a kilo of the plasmasphere’s material outwards each second at a speed of over 5,000 km/h. This plasma motion was present at all times, even when the Earth’s magnetic field was not being disturbed by energetic particles coming from the Sun.

Researchers predicted a space wind with these properties over 20 years ago: it is the result of an imbalance between the various forces that govern plasma motion. But direct detection eluded observation until now.

“The plasmaspheric wind is a weak phenomenon, requiring for its detection sensitive instrumentation and detailed measurements of the particles in the plasmasphere and the way they move,” explains Dandouras, who is also the vice-president of the EGU Planetary and Solar System Sciences Division.

The wind contributes to the loss of material from the Earth’s top atmospheric layer and, at the same time, is a source of plasma for the outer magnetosphere above it. Dandouras explains: “The plasmaspheric wind is an important element in the mass budget of the plasmasphere, and has implications on how long it takes to refill this region after it is eroded following a disturbance of the planet’s magnetic field. Due to the plasmaspheric wind, supplying plasma – from the upper atmosphere below it – to refill the plasmasphere is like pouring matter into a leaky container.”

The plasmasphere, the most important plasma reservoir inside the magnetosphere, plays a crucial role in governing the dynamics of the Earth’s radiation belts. These present a radiation hazard to satellites and to astronauts travelling through them. The plasmasphere’s material is also responsible for introducing a delay in the propagation of GPS signals passing through it.

“Understanding the various source and loss mechanisms of plasmaspheric material, and their dependence on the geomagnetic activity conditions, is thus essential for understanding the dynamics of the magnetosphere, and also for understanding the underlying physical mechanisms of some space weather phenomena,” says Dandouras.

Michael Pinnock, Editor-in-Chief of Annales Geophysicae recognises the importance of the new result. “It is a very nice proof of the existence of the plasmaspheric wind. It’s a significant step forward in validating the theory. Models of the plasmasphere, whether for research purposes or space weather applications (e.g. GPS signal propagation) should now take this phenomenon into account,” he wrote in an email.

Similar winds could exist around other planets, providing a way for them to lose atmospheric material into space. Atmospheric escape plays a role in shaping a planet’s atmosphere and, hence, its habitability.

*More information*
This research is presented in the paper ‘Detection of a plasmaspheric wind in the Earth’s magnetosphere by the Cluster spacecraft’ to appear in the EGU open access journal Annales Geophysicae on 2 July 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper or to the journal website (http://www.annales-geophysicae.net/).

The scientific article is available online, free of charge, from the publication date onwards, at http://www.ann-geophys.net/recent_papers.html. To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.

The paper is authored by Iannis Dandouras of the Research Institute in Astrophysics and Planetology (IRAP), a joint institute of the French National Centre for Scientific Research (CNRS) and the Paul Sabatier University in Toulouse, France. The data was acquired by the CIS, Cluster Ion Spectrometry, experiment onboard ESA’s Cluster, a constellation of four spacecraft flying in formation around Earth.

The European Geosciences Union (http://www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contact*
Iannis Dandouras
Research Institute in Astrophysics and Planetology (IRAP)
Toulouse, France
Tel: +33-5-6155-8320
Email: Iannis.Dandouras@irap.omp.eu

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.egu.eu/news/66/cluster-spacecraft-detects-elusive-space-wind/
http://www.annales-geophysicae.net/

Dr. Bárbara Ferreira | European Geosciences Union
Further information:
http://www.egu.eu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>