Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate in northern Europe reconstructed: Cooling trend calculated precisely for the first time

09.07.2012
The calculations prepared by Mainz scientists will also influence the way current climate change is perceived. Publication of results in Nature Climate Change.

An international team that includes scientists from Johannes Gutenberg University Mainz (JGU) has published a reconstruction of the climate in northern Europe over the last 2,000 years based on the information provided by tree-rings.


The researchers were able to create a temperature reconstruction of unprecedented quality.
Foto: JGU

Professor Dr. Jan Esper's group at the Institute of Geography at JGU used tree-ring density measurements from sub-fossil pine trees originating from Finnish Lapland to produce a reconstructions reaching back to 138 BC. In so doing, the researchers have been able for the first time to precisely demonstrate that the long term trend over the past two millennia has been towards climatic cooling. "We found that previous estimates of historical temperatures during the Roman era and the Middle Ages were too low," says Professor Esper.

"Such findings are also significant with regard to climate policy, as they will influence the way today's climate changes are seen in context of historical warm periods." The new study has been published on Sunday July 8th in the journal Nature Climate Change.

Was the climate during Roman and Medieval times warmer than today? And why are these earlier warm periods important when assessing the global climate changes we are experiencing today? The discipline of paleoclimatology attempts to answer such questions. Scientists analyze indirect evidence of climate variability, such as ice cores and ocean sediments, and so reconstruct the climate of the past. The annual growth rings in trees are the most important witnesses over the past 1,000 to 2,000 years as they indicate how warm and cool past climate conditions were.

Researchers from Germany, Finland, Scotland, and Switzerland examined tree-ring density profiles in trees from Finnish Lapland. In this cold environment, trees often collapse into one of the numerous lakes, where they remain well preserved for thousands of years. The international research team used these density measurements from sub-fossil pine trees in northern Scandinavia to create a sequence reaching back to 138 BC. The density measurements correlate closely with the summer temperatures in this area on the edge of the Nordic taiga; the researchers were thus able to create a temperature reconstruction of unprecedented quality. The reconstruction provides a high-resolution representation of temperature patterns in the Roman and Medieval Warm periods, but also shows the cold phases that occurred during the Migration Period and the later Little Ice Age (see image).

In addition to the cold and warm phases, the new climate curve also exhibits a phenomenon that was not expected in this form. For the first time, researchers have now been able to use the data derived from tree-rings to precisely calculate a much longer-term cooling trend that has been playing out over the past 2,000 years. Their findings demonstrate that this trend involves a cooling of -0.3°C per millennium due to gradual changes to the position of the sun and an increase in the distance between the Earth and the Sun.

"This figure we calculated may not seem particularly significant," says Professor Esper, "however, it is also not negligible when compared to global warming, which up to now has been less than 1°C. Our results suggest that the large-scale climate reconstruction shown by the Intergovernmental Panel on Climate Change (IPCC), likely underestimate this long-term cooling trend over the past few millennia."

Publication:
Jan Esper, David C. Frank, Mauri Timonen, Eduardo Zorita, Rob J. S. Wilson, Jürg Luterbacher, Steffen Holzkämper, Nils Fischer, Sebastian Wagner, Daniel Nievergelt, Anne Verstege, Ulf Büntgen
"Orbital forcing of tree-ring data"
Nature Climate Change, 8 July 2008, DOI: 10.1038/NCLIMATE158
Further information:
Professor Dr Jan Esper
Institute of Geography
Johannes Gutenberg University Mainz
D 55099 Mainz
phone +49 6131 39-22296
e-mail j.esper@geo.uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.geo.uni-mainz.de/esper/

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>