Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change and the soil

24.07.2014

Climate warming may not drive net losses of soil carbon from tropical forests

The planet's soil releases about 60 billion tons of carbon into the atmosphere each year, which is far more than that released by burning fossil fuels. This happens through a process called soil respiration. This enormous release of carbon is balanced by carbon coming into the soil system from falling leaves and other plant matter, as well as by the underground activities of plant roots.

Short-term warming studies have documented that rising temperatures increase the rate of soil respiration. As a result, scientists have worried that global warming would accelerate the decomposition of carbon in the soil, and decrease the amount of carbon stored there. If true, this would release even more carbon dioxide into the atmosphere, where it would accelerate global warming.

New work by a team of scientists including Carnegie's Greg Asner and Christian Giardina of the U.S. Forest Service used an expansive whole-ecosystem study, the first of its kind, on tropical montane wet forests in Hawaii to sort through the many processes that control soil carbon stocks with changing temperature. Their work is published in Nature Climate Change.

The team revealed that higher temperatures increased the amount of leaf litter falling onto the soil, as well as other underground sources of carbon such as roots. Surprisingly, long-term warming had little effect on the overall storage of carbon in the tropical forest soil or the rate at which that carbon is processed into carbon dioxide.

"If these findings hold true in other tropical regions, then warmer temperatures may not necessarily cause tropical soils to release their carbon to the atmosphere at a faster rate," remarked Asner. "On the other hand, we cannot expect that the soil will soak up more carbon in places where vegetation is stimulated by warmer temperatures. Unlike tropical trees, the soil seems to be on the sidelines in the climate adaptation game."

This means the observed increase in the rate of soil respiration accompanying rising temperatures is due to carbon dioxide released by the an uptick in the amount of litter falling on the forest floor and an increase in carbon from underground sources. It is not from a decrease in the overall amount of carbon stored in the soil.

Giardina noted "While we found that carbon stored in the mineral soil was insensitive to long-term warming, the loss of unprotected carbon responded strongly to temperature. This tells us that the sensitivity of each source of soil respiration needs to be quantified, and the aggregate response examined, before an understanding of ecosystem carbon balance in a warmer world can be achieved."

###

This work was funded by the National Science Foundation, the College of Tropical Agriculture and Human Resources at the University of Hawaii at Manoa, the USDA Forest Service, and the Carnegie Institution for Science.

The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, Gordon and Betty Moore Foundation, W. M. Keck Foundation, the Margaret A. Cargill Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, DC, with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Greg Asner | Eurek Alert!

Further reports about: Baker Carnegie Climate Institution atmosphere decrease respiration temperature tropical

More articles from Earth Sciences:

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

nachricht Groundwater discharge to upper Colorado River Basin varies in response to drought
21.07.2016 | US Geological Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>