Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change and the soil

24.07.2014

Climate warming may not drive net losses of soil carbon from tropical forests

The planet's soil releases about 60 billion tons of carbon into the atmosphere each year, which is far more than that released by burning fossil fuels. This happens through a process called soil respiration. This enormous release of carbon is balanced by carbon coming into the soil system from falling leaves and other plant matter, as well as by the underground activities of plant roots.

Short-term warming studies have documented that rising temperatures increase the rate of soil respiration. As a result, scientists have worried that global warming would accelerate the decomposition of carbon in the soil, and decrease the amount of carbon stored there. If true, this would release even more carbon dioxide into the atmosphere, where it would accelerate global warming.

New work by a team of scientists including Carnegie's Greg Asner and Christian Giardina of the U.S. Forest Service used an expansive whole-ecosystem study, the first of its kind, on tropical montane wet forests in Hawaii to sort through the many processes that control soil carbon stocks with changing temperature. Their work is published in Nature Climate Change.

The team revealed that higher temperatures increased the amount of leaf litter falling onto the soil, as well as other underground sources of carbon such as roots. Surprisingly, long-term warming had little effect on the overall storage of carbon in the tropical forest soil or the rate at which that carbon is processed into carbon dioxide.

"If these findings hold true in other tropical regions, then warmer temperatures may not necessarily cause tropical soils to release their carbon to the atmosphere at a faster rate," remarked Asner. "On the other hand, we cannot expect that the soil will soak up more carbon in places where vegetation is stimulated by warmer temperatures. Unlike tropical trees, the soil seems to be on the sidelines in the climate adaptation game."

This means the observed increase in the rate of soil respiration accompanying rising temperatures is due to carbon dioxide released by the an uptick in the amount of litter falling on the forest floor and an increase in carbon from underground sources. It is not from a decrease in the overall amount of carbon stored in the soil.

Giardina noted "While we found that carbon stored in the mineral soil was insensitive to long-term warming, the loss of unprotected carbon responded strongly to temperature. This tells us that the sensitivity of each source of soil respiration needs to be quantified, and the aggregate response examined, before an understanding of ecosystem carbon balance in a warmer world can be achieved."

###

This work was funded by the National Science Foundation, the College of Tropical Agriculture and Human Resources at the University of Hawaii at Manoa, the USDA Forest Service, and the Carnegie Institution for Science.

The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, Gordon and Betty Moore Foundation, W. M. Keck Foundation, the Margaret A. Cargill Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, DC, with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Greg Asner | Eurek Alert!

Further reports about: Baker Carnegie Climate Institution atmosphere decrease respiration temperature tropical

More articles from Earth Sciences:

nachricht Study offers new insights on hurricane intensity, pollution transport
03.08.2015 | University of Miami Rosenstiel School of Marine & Atmospheric Science

nachricht Glaciers melt faster than ever
03.08.2015 | Universität Zürich

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>