Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change and the soil


Climate warming may not drive net losses of soil carbon from tropical forests

The planet's soil releases about 60 billion tons of carbon into the atmosphere each year, which is far more than that released by burning fossil fuels. This happens through a process called soil respiration. This enormous release of carbon is balanced by carbon coming into the soil system from falling leaves and other plant matter, as well as by the underground activities of plant roots.

Short-term warming studies have documented that rising temperatures increase the rate of soil respiration. As a result, scientists have worried that global warming would accelerate the decomposition of carbon in the soil, and decrease the amount of carbon stored there. If true, this would release even more carbon dioxide into the atmosphere, where it would accelerate global warming.

New work by a team of scientists including Carnegie's Greg Asner and Christian Giardina of the U.S. Forest Service used an expansive whole-ecosystem study, the first of its kind, on tropical montane wet forests in Hawaii to sort through the many processes that control soil carbon stocks with changing temperature. Their work is published in Nature Climate Change.

The team revealed that higher temperatures increased the amount of leaf litter falling onto the soil, as well as other underground sources of carbon such as roots. Surprisingly, long-term warming had little effect on the overall storage of carbon in the tropical forest soil or the rate at which that carbon is processed into carbon dioxide.

"If these findings hold true in other tropical regions, then warmer temperatures may not necessarily cause tropical soils to release their carbon to the atmosphere at a faster rate," remarked Asner. "On the other hand, we cannot expect that the soil will soak up more carbon in places where vegetation is stimulated by warmer temperatures. Unlike tropical trees, the soil seems to be on the sidelines in the climate adaptation game."

This means the observed increase in the rate of soil respiration accompanying rising temperatures is due to carbon dioxide released by the an uptick in the amount of litter falling on the forest floor and an increase in carbon from underground sources. It is not from a decrease in the overall amount of carbon stored in the soil.

Giardina noted "While we found that carbon stored in the mineral soil was insensitive to long-term warming, the loss of unprotected carbon responded strongly to temperature. This tells us that the sensitivity of each source of soil respiration needs to be quantified, and the aggregate response examined, before an understanding of ecosystem carbon balance in a warmer world can be achieved."


This work was funded by the National Science Foundation, the College of Tropical Agriculture and Human Resources at the University of Hawaii at Manoa, the USDA Forest Service, and the Carnegie Institution for Science.

The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, Gordon and Betty Moore Foundation, W. M. Keck Foundation, the Margaret A. Cargill Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, DC, with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Greg Asner | Eurek Alert!

Further reports about: Baker Carnegie Climate Institution atmosphere decrease respiration temperature tropical

More articles from Earth Sciences:

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

nachricht Mapping glaciers
09.10.2015 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>