Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon sequestration: Boon or burden

28.06.2010
The idea to sequester carbon is gaining support as a way to avoid global warming.

For example, the European Union plans to invest billions of Euros within the next ten years to develop carbon capture and storage whereby CO2 will be extracted at power plants and other combustion sites and stored underground.

But how effective is this procedure and what are the long-term consequences of leakage for the oceans and climate? A Niels Bohr Institute researcher has now cast light upon these issues. This research has just been published in the scientific journal, Nature Geoscience.

Large scale use of carbon sequestration could help to avoid extreme global warming that would otherwise occur in the near future unless fossil fuel emissions are reduced significantly. But it is not clear how effective different types of sequestration are in the long run, owing to leakage of stored CO2 back out to the atmosphere. Nor is it clear what would be the long-term consequences of such leakage for the Earth's environment.

Gary Shaffer, professor at the Niels Bohr Institute, and leader of the Danish Center for Earth System Science, made long model projections for a number of sequestration/leakage scenarios. His results show that leakage of the stored CO2 may bring about large atmosphere warming, large sea level rise and oxygen depletion, acidification and elevated CO2 concentrations in the ocean.

Storage of CO2 in the deep ocean is a poor choice since this creates grave problems for deep sea life and since CO2 stored this way returns to the atmosphere relatively quickly, bringing back the global warming.

Geological storage may be more effective in delaying the return of the warming and associated consequences but only if a CO2 leakage of 1 % or less per thousand years can be obtained.

A burden for future society

Alternatively, one could actively counter leakage from the ocean or geological reservoirs by re-sequestering CO2 to stabilize climate at some desired level. But it would be hard to gauge the global leakage rate to be matched by re-sequestration. Furthermore, re-sequestration would have to be carried out over many thousands of years, a burden for future society in line with that of long term management of nuclear waste.

"CO2 sequestration has many potential advantages over other forms of climate geoengineering. It makes good sense to modify the Earth's radiation balance by putting carbon back in where it came from. Atmospheric CO2 is long-lived and evenly-distributed globally making it possible to manage it in a long-term, controlled way with less chance for unpleasant climate surprises. However, one should not underestimate potential short and long-term problems with leakage from underground reservoirs. Carbon in light form will seek its way out of the ground or seabed. The present situation in the Gulf of Mexico is a poignant reminder of that", says Gary Shaffer.

Professor Shaffer concludes that "the dangers of carbon sequestration are real and the development of this technique should not be used as an argument for continued high fossil fuel emissions. On the contrary, we should greatly limit CO2 emissions in our time to reduce the need for massive carbon sequestration and thus reduce unwanted consequences and burdens over many future generations from the leakage of sequestered CO2."

Contact:

Gary Shaffer, Professor of Oceanography/Climate, Niels Bohr Institute, University of Copenhagen and leader of the Danish Center for Earth System Science (tel. 45 35320612; e-mail: gs@nbi.ku.dk)

Professor Shaffer is also at the Department of Geophysics, University of Concepcion, Chile (e-mail: gshaffer@dgeo.udec.cl).

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>