Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon sequestration: Boon or burden

28.06.2010
The idea to sequester carbon is gaining support as a way to avoid global warming.

For example, the European Union plans to invest billions of Euros within the next ten years to develop carbon capture and storage whereby CO2 will be extracted at power plants and other combustion sites and stored underground.

But how effective is this procedure and what are the long-term consequences of leakage for the oceans and climate? A Niels Bohr Institute researcher has now cast light upon these issues. This research has just been published in the scientific journal, Nature Geoscience.

Large scale use of carbon sequestration could help to avoid extreme global warming that would otherwise occur in the near future unless fossil fuel emissions are reduced significantly. But it is not clear how effective different types of sequestration are in the long run, owing to leakage of stored CO2 back out to the atmosphere. Nor is it clear what would be the long-term consequences of such leakage for the Earth's environment.

Gary Shaffer, professor at the Niels Bohr Institute, and leader of the Danish Center for Earth System Science, made long model projections for a number of sequestration/leakage scenarios. His results show that leakage of the stored CO2 may bring about large atmosphere warming, large sea level rise and oxygen depletion, acidification and elevated CO2 concentrations in the ocean.

Storage of CO2 in the deep ocean is a poor choice since this creates grave problems for deep sea life and since CO2 stored this way returns to the atmosphere relatively quickly, bringing back the global warming.

Geological storage may be more effective in delaying the return of the warming and associated consequences but only if a CO2 leakage of 1 % or less per thousand years can be obtained.

A burden for future society

Alternatively, one could actively counter leakage from the ocean or geological reservoirs by re-sequestering CO2 to stabilize climate at some desired level. But it would be hard to gauge the global leakage rate to be matched by re-sequestration. Furthermore, re-sequestration would have to be carried out over many thousands of years, a burden for future society in line with that of long term management of nuclear waste.

"CO2 sequestration has many potential advantages over other forms of climate geoengineering. It makes good sense to modify the Earth's radiation balance by putting carbon back in where it came from. Atmospheric CO2 is long-lived and evenly-distributed globally making it possible to manage it in a long-term, controlled way with less chance for unpleasant climate surprises. However, one should not underestimate potential short and long-term problems with leakage from underground reservoirs. Carbon in light form will seek its way out of the ground or seabed. The present situation in the Gulf of Mexico is a poignant reminder of that", says Gary Shaffer.

Professor Shaffer concludes that "the dangers of carbon sequestration are real and the development of this technique should not be used as an argument for continued high fossil fuel emissions. On the contrary, we should greatly limit CO2 emissions in our time to reduce the need for massive carbon sequestration and thus reduce unwanted consequences and burdens over many future generations from the leakage of sequestered CO2."

Contact:

Gary Shaffer, Professor of Oceanography/Climate, Niels Bohr Institute, University of Copenhagen and leader of the Danish Center for Earth System Science (tel. 45 35320612; e-mail: gs@nbi.ku.dk)

Professor Shaffer is also at the Department of Geophysics, University of Concepcion, Chile (e-mail: gshaffer@dgeo.udec.cl).

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>