Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon release to atmosphere 10 times faster than in the past

06.06.2011
The rate of release of carbon into the atmosphere today is nearly 10 times as fast as during the Paleocene-Eocene Thermal Maximum (PETM), 55.9 million years ago, the best analog we have for current global warming, according to an international team of geologists. Rate matters and this current rapid change may not allow sufficient time for the biological environment to adjust.

"We looked at the PETM because it is thought to be the best ancient analog for future climate change caused by fossil fuel burning," said Lee R. Kump, professor of geosciences, Penn State.

However, the researchers note in the current issue of Nature Geoscience, that the source of the carbon, the rate of emission and the total amount of carbon involved in this event during the PETM are poorly characterized.

Investigations of the PETM are usually done using core samples from areas that were deep sea bottom 55.9 million years ago. These cores contain layers of calcium carbonate from marine animals that can show whether the carbon in the carbonate came from organic or inorganic sources. Unfortunately, when large amounts of greenhouse gases --carbon dioxide or methane -- are in the atmosphere, the oceans become more acidic, and acid dissolves calcium carbonate.

"We were concerned with the fidelity of the deep sea records," said Kump. "How do we determine the rate of change of atmospheric carbon if the record is incomplete? The incomplete record makes the warming appear more abrupt."

Kump and his colleagues decided to look at information coming from areas that were shallow arctic ocean bottom during the PETM. During a Worldwide Universities Network expedition to train graduate students from Penn State, the University of Southampton, University of Leeds, University of Utrecht and University of Oslo in how projects develop, the researchers visited Spitsbergen, Norway. They uncovered a supply of rock cores curated by a forward-thinking young coal-mining company geologist, Malte Jochmann.

"Deep-sea cores usually have from 10 cm to a meter (about 4 inches to 3 feet) of core corresponding to the PETM," said Kump. "The Spitsbergen cores have 150 meters (492 feet) of sediment for the PETM."

The larger sediment section, made up of mud that came into the shallow ocean contains organic matter that can also supply the carbon isotope signature and provide the greenhouse gas profile of the atmosphere. With the larger core segment, it is easier to look at what happened through time and ocean acidification would not degrade the contents.

"We think the Spitsbergen core is relatively complete and shows an interval of about 20,000 years for the injection of carbon dioxide during the PETM," said Kump.

Using the data collected from the cores, the researchers forced a computer model to in essence run backward. They set up the models to find the proper amounts of greenhouse gases and atmospheric temperature that would have resulted in the carbon isotope ratios observed in the cores.

The outcome was a warming of from 9 to 16 degrees Fahrenheit and an acidification event in the oceans.

"Rather than the 20,000 years of the PETM which is long enough for ecological systems to adapt, carbon is now being released into the atmosphere at a rate 10 times faster," said Kump. "It is possible that this is faster than ecosystems can adapt."

Other Penn State researchers on this project include Ying Cui, graduate student and Katherine H. Freeman, professor; geosciences, Christopher K. Junium and Aaron F. Diefendorf, former graduates students and Nathan M. Urban former postdoctoral fellow.

Other researchers include Ian C. Harding, senior lecturer, and Adam J. Charles graduate student, National Oceanography Centre Southampton, University of Southampton, UK and Andy J. Ridgwell, professor of Earth system modeling, School of Geographical Sciences, University of Bristol, UK.

The National Science Foundation, Worldwide Universities Network and Penn State supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>