Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists explain puzzling lake asymmetry on Titan

30.11.2009
Researchers at the California Institute of Technology (Caltech) suggest that the eccentricity of Saturn's orbit around the sun may be responsible for the unusually uneven distribution of methane and ethane lakes over the northern and southern polar regions of the planet's largest moon, Titan. On Earth, similar "astronomical forcing" of climate drives ice-age cycles.

A paper describing the theory appears in the November 29th advance online edition of Nature Geoscience.

As revealed by Synthetic Aperture Radar (SAR) imaging data taken by NASA's Cassini spacecraft, which has been surveying Saturn and its moons since 2004, liquid hydrocarbon–filled lakes in Titan's northern high latitudes cover 20 times more area than lakes in the southern high latitudes. There are also significantly more partially filled and now-empty lakes in the north. (In the SAR data, smooth features—like the surfaces of lakes—appear as dark areas, while rougher features—such as the bottom of an empty lake—appear bright.)

Assuming that the asymmetry is not a statistical fluke (which is unlikely because of the large amount of data collected by Cassini), scientists initially considered the idea that "there is something inherently different about the northern polar region versus the south in terms of topography, such that liquid rains, drains, or infiltrates the ground more in one hemisphere," says Oded Aharonson, associate professor of planetary science at Caltech and lead author of the Nature Geoscience paper. However, he notes, there are no substantial known differences between the north and south to support this possibility.

Alternatively, the mechanism may be seasonal. One year on Titan lasts 29.5 Earth years. Every 15 Earth years the seasons reverse, so that it becomes summer in one hemisphere and winter in the other. (Currently, summer has just begun in the northern hemisphere, and winter in the south.) According to the seasonal hypothesis, methane rainfall and evaporation vary in different seasons—recently filling lakes in the north while drying lakes in the south.

The problem with this idea, Aharonson says, is that it explains decreases of about one meter per year in the depths of lakes in the summer hemisphere. But Titan's lakes are a few hundred meters deep on average, and wouldn't drain (or fill) in just 15 years.

In addition, seasonal variation can't account for the disparity between the hemispheres in the number of empty lakes; the northern pole has roughly three times as many dried-up lake basins as the south (and seven times as many partially filled ones).

"How do you move the hole in the ground?" Aharonson asks. "The seasonal mechanism may be responsible for part of the global transport of liquid methane, but it's not the whole story."

A more plausible explanation, say Aharonson and his colleagues, is related to the eccentricity of the orbit of Saturn—and hence of Titan, its satellite—around the sun.

Like Earth and the other planets, Saturn's orbit is not perfectly circular, but is instead somewhat elliptical—or eccentric—and oblique. Because of this, during its southern summer, Titan is about 12 percent closer to the sun than it is during the northern summer. As a result, northern summers are long and subdued while southern summers are short and intense.

Aharonson and his colleagues think these differences in the characteristics of the seasons could somehow affect the relative amounts of precipitation and evaporation of methane in the hemispheres' respective summers.

"We propose that, in this orbital configuration, the difference between evaporation and precipitation is not equal in opposite seasons, which means there is a net transport of methane from south to north," he says. This imbalance would lead to an accumulation of methane—and hence the formation of many more lakes—in the northern hemisphere.

This situation is only true right now, however. Over very long time scales of tens of thousands of years, Saturn's orbital parameters vary, at times causing Titan to be closer to the sun during its northern summer and farther away in southern summers, and producing a reverse in the net transport of methane. This should lead to a buildup of the hydrocarbon—and an abundance of lakes—in the southern hemisphere.

"Like Earth, Titan has tens-of-thousands-of-year variations in climate driven by orbital motions," Aharonson says. On Earth, these variations, known as Milankovitch cycles, are linked to the global redistribution of water in the form of glaciers, and are responsible for ice-age cycles. "On Titan, there are long-term climate cycles in the global movement of methane that make lakes and carve lake basins. In both cases we find a record of the process embedded in the geology," he adds.

"We may have found an example of present-day climate change, analogous to Milankovitch climate cycles on Earth, on another object in the solar system," he says.

The paper, "Titan's Asymmetric Lake Distribution and its Potential Astronomical Evolution," was coauthored by Caltech graduate student Alexander G. Hayes; Jonathan I. Lunine of the Lunar and Planetary Laboratory; Ralph D. Lorenz of the Applied Physics Laboratory at the Johns Hopkins University; Michael D. Allison of the NASA Goddard Institute for Space Studies; and Charles Elachi, director of the Jet Propulsion Laboratory. The work was partially funded by the Cassini Project.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://www.gps.caltech.edu/~oa/titanlakes.shtml
http://media.caltech.edu

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>