Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in El Niño-Forecasting

02.07.2013
Irregular warming of the Eastern Pacific Ocean, dubbed El Niño by Peruvian fishermen, can generate devastating impacts.

Being the most important phenomenon of contemporary natural climate variability, it may trigger floods in Latin America, droughts in Australia, and harvest failures in India.

In order to extend forecasting from 6 months to one year or even more, scientists have now proposed a novel approach based on advanced connectivity analysis applied to the climate system. The scheme builds on high-quality data of air temperatures and clearly outperforms existing methods. The study will be published this week in the Proceedings of the National Academy of Sciences.

"Enhancing the preparedness of people in the affected regions by providing more early-warning time is key to avoiding some of the worst effects of El Niño," says Hans Joachim Schellnhuber, director of the Potsdam Institute for Climate Impact Research and co-author of the study by Josef Ludescher et al (Justus-Liebig Universität Giessen). The new approach employs network analysis which is a cutting-edge methodology at the crossroads of physics and mathematics. Data from more than 200 measurement points in the Pacific, available from the 1950s on, were crucial for studying the interactions between distant sites that cooperate in bringing about the warming.

According to Schellnhuber a new algorithm was developed and tested which does not only extend the forecasting time but also enhances the reliability. In fact, the novel method correctly predicted the absence of an El Niño-event in the last year. This forecast was made in 2011 already, whereas conventional approaches kept on predicting a significant warming far into 2012.

El Niño is part of a more general oscillation of the Pacific ocean-atmosphere system called ENSO, which also embraces anomalous cold episodes dubbed La Niña which can inflict severe damages as well. The present study focuses on the warming events only. However, an El Niño-year is followed by a La Niña-year, as a rough rule.

"It is still unclear to which extent global warming caused by humankind's emissions of greenhouse gases will influence the ENSO pattern," says Schellnhuber. “Yet the latter is often counted among the so-called tipping elements in the Earth system, meaning that at some level of climate change it might experience a relatively abrupt transformation." Certain data from the Earth's past suggest that higher mean global temperatures could increase the amplitude of the oscillation, so correct forecasting would become even more important.

Article: Ludescher, J., Gozolchiani, A., Bogachev, M.I., Bunde, A., Havlin, S., Schellnhuber, H.J. (2013): Improved El Niño frorecasting by cooperativity detection. Proceedings of the National Academy of Sciences (early online edition) [DOI:10.1073/pnas.1309353110]

Weblink to the article once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1309353110

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://www.pnas.org/cgi/doi/10.1073/pnas.1309353110

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>