Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in Crystal Structure Prediction Supports Theory on Neptune's Interior Heat

06.01.2011
USPEX Helps to Solve Long-Standing Mystery of Planet Neptune’s Excessive Heat

Stony Brook University Professor of Geosciences and Physics, Artem Oganov, along with several colleagues, appears to have solved the long-standing mystery of excessive heat on the planet Neptune. Using Oganov’s innovative method for crystal structure prediction, the researchers have established support for theory that the sinking of massive amounts of diamond in Neptune’s interior creates its heat.

Professor Oganov’s unique prediction method, Universal Structure Predictor: Evolutionary Xtallography—or USPEX—solves a central problem of computational materials science, namely the prediction of stable crystal structures while having only the chemical formula.

"Professor Oganov and his collaborators have developed a simple and elegant modeling approach that opens new perspectives in materials sciences," says Professor Gilles Frapper, leader of the theoretical chemistry group, Laboratory of Catalysis in Organic Chemistry, at Poitiers University in France. "USPEX provides great opportunities to predict the structure of compounds simply starting from a chemical formula and letting the ‘evolutionary code’ work."

"Results in this work are extremely interesting and are expected to help in developing realistic models of internal evolution and energetics of planets like Neptune and Uranus," notes Professor Aitor Bergara, a faculty member at the Science and Technology and Donostia International Physics Center (DIPC) at the University of the Basque Country in Spain.

Oganov's team made the first major step in solving this problem in 2006 with their development of a powerful evolutionary algorithm that finds the stable structure using ideas inspired by biological evolution. This method has been called "revolutionary" by some scientists, and Oganov's simulation program, distributed free on his website, is now used by more than 250 researchers worldwide.

The latest development greatly speeds up the search and enables unprecedentedly complex systems to be treated.

"The USPEX method becomes extremely powerful to predict the most stable crystal structures," notes Professor Bergara. "This method is completely ab initio, does not require experimental information and is based on the ideas of natural evolution: the computer generates dozens of initial structures, but only the most preferred ones are allowed to mate and mutate before starting the process, until the best candidates are finally obtained.

"USPEX is becoming very popular among the scientific community and is being widely used all over the world," notes Professor Bergara.

"The key to success was to learn from nature," says Andriy O. Lyakhov, a postdoctoral student at Stony Brook University and a member of Oganov’s research team. "Evolutionary algorithms in general are inspired by the living world, and there is more to learn from crystallography itself."

Oganov's method has already been applied to a range of materials, leading to numerous predictions that looked impossible within traditional chemistry, yet were confirmed by subsequent experiments. The research has yielded over 50 publications, many in Nature, Physical Review Letters and PNAS, and include the following: the prediction of startling transformation of metallic sodium into a transparent non-metallic material under pressure; discovery of a partially ionic form of a pure element (boron); prediction of very unusual high-pressure states of calcium; discovery of a new allotropic structure of carbon; and predicted stability of certain unusual Li-H compounds.

The most recent developments enable structure predictions for nanoparticles and surfaces that have the potential to revolutionize the development of new technologies.

"This is a very exciting time," says Professor Oganov. "What was thought to be impossible yesterday is now becoming possible, including the discovery of new materials on the computer.” He adds, "We can even study processes that take place in deep interiors of remote planets, as the study of diamond formation on Neptune shows."

Professor Frapper concurs.

"This is a very exciting time for chemists," he says. "Oganov’s breakthrough will play a major role in material design."

"Modern Methods of Crystal Structure Prediction", edited by Artem Oganov, has just been published (November 2010) by Wiley-VCH Publishing in Berlin, Germany. The book provides a summary of the major achievements in recent years, as well as the challenges that still remain.

[1] Gao G., Oganov A.R., Wang H., Li P., Ma Y., Cui T., Zou G. (2010). Dissociation of methane under high pressure. J. Chem. Phys. 133, 144508.
[2] Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, art. 244704
[3] Lyakhov A.O., Oganov A.R., Valle M. (2010). How to predict very large and complex crystal structures. Comp. Phys. Comm. 181, 1623-1632
[4] Oganov A.R. (Editor). Modern Methods of Crystal Structure Prediction. Berlin: Wiley-VCH. ISBN: 978-3-527-40939-6. (2010).

[5] USPEX code: http://han.ess.sunysb.edu/~USPEX/

Media Relations Office | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>