Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in Crystal Structure Prediction Supports Theory on Neptune's Interior Heat

06.01.2011
USPEX Helps to Solve Long-Standing Mystery of Planet Neptune’s Excessive Heat

Stony Brook University Professor of Geosciences and Physics, Artem Oganov, along with several colleagues, appears to have solved the long-standing mystery of excessive heat on the planet Neptune. Using Oganov’s innovative method for crystal structure prediction, the researchers have established support for theory that the sinking of massive amounts of diamond in Neptune’s interior creates its heat.

Professor Oganov’s unique prediction method, Universal Structure Predictor: Evolutionary Xtallography—or USPEX—solves a central problem of computational materials science, namely the prediction of stable crystal structures while having only the chemical formula.

"Professor Oganov and his collaborators have developed a simple and elegant modeling approach that opens new perspectives in materials sciences," says Professor Gilles Frapper, leader of the theoretical chemistry group, Laboratory of Catalysis in Organic Chemistry, at Poitiers University in France. "USPEX provides great opportunities to predict the structure of compounds simply starting from a chemical formula and letting the ‘evolutionary code’ work."

"Results in this work are extremely interesting and are expected to help in developing realistic models of internal evolution and energetics of planets like Neptune and Uranus," notes Professor Aitor Bergara, a faculty member at the Science and Technology and Donostia International Physics Center (DIPC) at the University of the Basque Country in Spain.

Oganov's team made the first major step in solving this problem in 2006 with their development of a powerful evolutionary algorithm that finds the stable structure using ideas inspired by biological evolution. This method has been called "revolutionary" by some scientists, and Oganov's simulation program, distributed free on his website, is now used by more than 250 researchers worldwide.

The latest development greatly speeds up the search and enables unprecedentedly complex systems to be treated.

"The USPEX method becomes extremely powerful to predict the most stable crystal structures," notes Professor Bergara. "This method is completely ab initio, does not require experimental information and is based on the ideas of natural evolution: the computer generates dozens of initial structures, but only the most preferred ones are allowed to mate and mutate before starting the process, until the best candidates are finally obtained.

"USPEX is becoming very popular among the scientific community and is being widely used all over the world," notes Professor Bergara.

"The key to success was to learn from nature," says Andriy O. Lyakhov, a postdoctoral student at Stony Brook University and a member of Oganov’s research team. "Evolutionary algorithms in general are inspired by the living world, and there is more to learn from crystallography itself."

Oganov's method has already been applied to a range of materials, leading to numerous predictions that looked impossible within traditional chemistry, yet were confirmed by subsequent experiments. The research has yielded over 50 publications, many in Nature, Physical Review Letters and PNAS, and include the following: the prediction of startling transformation of metallic sodium into a transparent non-metallic material under pressure; discovery of a partially ionic form of a pure element (boron); prediction of very unusual high-pressure states of calcium; discovery of a new allotropic structure of carbon; and predicted stability of certain unusual Li-H compounds.

The most recent developments enable structure predictions for nanoparticles and surfaces that have the potential to revolutionize the development of new technologies.

"This is a very exciting time," says Professor Oganov. "What was thought to be impossible yesterday is now becoming possible, including the discovery of new materials on the computer.” He adds, "We can even study processes that take place in deep interiors of remote planets, as the study of diamond formation on Neptune shows."

Professor Frapper concurs.

"This is a very exciting time for chemists," he says. "Oganov’s breakthrough will play a major role in material design."

"Modern Methods of Crystal Structure Prediction", edited by Artem Oganov, has just been published (November 2010) by Wiley-VCH Publishing in Berlin, Germany. The book provides a summary of the major achievements in recent years, as well as the challenges that still remain.

[1] Gao G., Oganov A.R., Wang H., Li P., Ma Y., Cui T., Zou G. (2010). Dissociation of methane under high pressure. J. Chem. Phys. 133, 144508.
[2] Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, art. 244704
[3] Lyakhov A.O., Oganov A.R., Valle M. (2010). How to predict very large and complex crystal structures. Comp. Phys. Comm. 181, 1623-1632
[4] Oganov A.R. (Editor). Modern Methods of Crystal Structure Prediction. Berlin: Wiley-VCH. ISBN: 978-3-527-40939-6. (2010).

[5] USPEX code: http://han.ess.sunysb.edu/~USPEX/

Media Relations Office | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>