Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the strongest link triggered Big Baja Earthquake

17.02.2016

A spate of major earthquakes on small faults could overturn traditional views about how earthquakes start, according to a study from researchers at the Centro de Investigación Científica y de Educación Superior in Ensenada, Mexico, and the University of California, Davis.

The study, published Feb. 15 in the journal Nature Geoscience, highlights the role of smaller faults in forecasting California's risk of large earthquakes.


This 3-D LiDAR imaging of the Borrego Fault, ruptured during the 2010 El Mayor-Cucapah earthquake in Baja California, Mexico shows numerous small faults. The various colors represent elevation changes during the earthquake.

Credit: UC Davis

In the past 25 years, many of California's biggest earthquakes struck on small faults, away from the San Andreas Fault plate boundary. These events include the Landers, Hector Mine and Napa earthquakes. Several of the quakes were unexpected, rattling areas thought seismically quiet.

A closer look at one of the surprise events, the magnitude-7.2 El Mayor-Cucapah earthquake, showed that small faults may often link together along a "keystone" fault. A keystone is the central stone that holds a masonry structure together. During the El Mayor-Cucapah earthquake, the keystone fault broke first, unlocking seven smaller faults, the study found.

However, the research team discovered that of all the faults unzipped during the El Mayor-Cucapah earthquake, the keystone fault was not the one closest to breaking.

"One of the important outcomes of this study is you can have a whole network of faults activated together by one underpinning fault, and that's an important concern," said study co-author Michael Oskin, a UC Davis professor of geology. "An earthquake involving a system of small faults can be more damaging than a single event because it increases the amount of seismic energy released."

HOUSE OF CARDS

The April 4, 2010, El Mayor-Cucapah earthquake leapfrogged across seven faults and jumped a 5-mile wide gap. The researchers used a wealth of recorded seismic data and detailed mapping of surface changes to reconstruct the complex earthquake sequence.

The study reveals the underlying reason for this unusual pattern: a hidden fault buried at a shallow angle to the surface. Each of the seven faults steeply dips toward this hidden fault, linking up deep underground.

Lead author John Fletcher, a professor at CICESE, likened the system to a house of cards -- remove one key piece and the entire structure tumbles.

"The trick here is the cards can bend, but it isn't until one particular fault goes that the whole set ruptures," Fletcher said.

EARTHQUAKE RISK

The El Mayor-Cucapah earthquake occurred in a transition zone, between faults spreading open to form the Gulf of California and faults where the Pacific and North America tectonic plates slip sideways past one another. The earthquake was centered about 30 miles south-southeast of Mexicali in northern Baja California, Mexico.

The results suggest similar processes are at work in other areas where the Earth's crust accommodates major changes in shape.

"This gives us insight into how those messy things between the main faults work," Oskin said. "This might be pretty common."

In past events, the signal of a low-angle fault could have been masked because it activated a lot of high-angle faults in the same earthquake, the researchers said.

The idea could also explain a longstanding mystery: why the central San Andreas fault is almost perpendicular to its stress field. Oskin said the central San Andreas fault may also behave like a keystone fault.

###

BACKGROUND

The El Mayor-Cucapah earthquake caused extensive damage to the city of Mexicali, displacing more than 35,000 people and causing two deaths. The shaking demolished roads and irrigation channels in surrounding agricultural areas. Reports documented widespread liquefaction, road ruptures, cracked infrastructure, tilting power line towers and partial or total collapse of many buildings. Damage topped $440 million in the Mexicali Valley and $90 million in California's Imperial Valley.

Orlando Teran, a recent Ph.D. graduate with CICESE also co-authored the report.

The study was funded by the National Council of Science and Technology (CONACYT), National Science Foundation and the Southern California Earthquake Center.

Media Contact

Mike Oskin
meoskin@ucdavis.edu
530-752-3993

 @ucdavisnews

http://www.ucdavis.edu 

Mike Oskin | EurekAlert!

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>