Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breaking deep-sea waves reveal mechanism for global ocean mixing

Waves breaking over sandy beaches are captured in countless tourist photos. But enormous waves breaking deep in the ocean are seldom seen, although they play a crucial role in long-term climate cycles.

A University of Washington study for the first time recorded such a wave breaking in a key bottleneck for circulation in the world’s largest ocean. The study was published online this month in the journal Geophysical Research Letters.

Tom Peacock, MIT | Wide Eye Productions

The deep-sea waves are 800 feet tall, as high as a skyscraper.

The deep ocean is thought of as dark, cold and still. While this is mostly true, huge waves form between layers of water of different density. These skyscraper-tall waves transport heat, energy, carbon and nutrients around the globe. Where and how they break is important for the planet’s climate.

“Climate models are really sensitive not only to how much turbulence there is in the deep ocean, but to where it is,” said lead author Matthew Alford, an oceanographer in the UW Applied Physics Laboratory. He led the expedition to the Samoan Passage, a narrow channel in the South Pacific Ocean that funnels water flowing from Antarctica.

“The primary importance of understanding deep-ocean turbulence is to get the climate models right on long timescales,” Alford said.

Dense water in Antarctica sinks to the deep Pacific, where it eventually surges through a 25-mile gap in the submarine landscape northeast of Samoa.

“Basically the entire South Pacific flow is blocked by this huge submarine ridge,” Alford said. “The amount of water that’s trying to get northward through this gap is just tremendous – 6 million cubic meters of water per second, or about 35 Amazon Rivers.”

In the 1990s, a major expedition measured these currents through the Samoan Passage. The scientists inferred that a lot of mixing must also happen there, but couldn’t measure it.

In the summer of 2012 the UW team embarked on a seven-week cruise to track the 800-foot-high waves that form atop the flow, 3 miles below the ocean’s surface. Their measurements show these giant waves do break, producing mixing 1,000 to 10,000 times that of the surrounding slow-moving water.

“Oceanographers used to talk about the so-called ‘dark mixing’ problem, where they knew that there should be a certain amount of turbulence in the deep ocean, and yet every time they made a measurement they observed a tenth of that,” Alford said. “We found there’s loads and loads of turbulence in the Samoan Passage, and detailed measurements show it’s due to breaking waves.”

It turns out layers of water flowing over two consecutive ridges form a lee wave, like those in air that passes over mountains. These waves become unstable and turbulent, and break. Thus the deepest water, the densest in the world, mixes with upper layers and disappears.

This mixing helps explain why dense, cold water doesn’t permanently pool at the bottom of the ocean and instead rises as part of a global conveyor-belt circulation pattern.

The Samoan Passage is important because it mixes so much water, but similar processes happen in other places, Alford said. Better knowledge of deep-ocean mixing could help simulate global currents and place instruments to track any changes.

On a lighter note: Could an intrepid surfer ride these killer deep-sea waves?

“It would be really boring,” admitted Alford, who is a surfer. “The waves can take an hour to break, and I think most surfers are not going to wait that long for one wave.”

In fact, even making the measurements was painstaking work. Instruments took 1.5 hours to lower to the seafloor, and the ship traveled at only a half knot, slower than a person walking, during the 30-hour casts. New technology let the scientists measure turbulence directly and make measurements from instruments lowered more than 3 miles off the side of the ship.

The researchers left instruments recording long-term measurements. The team will do another 40-day cruise in January to collect those instruments and map currents flowing through various gaps in the intricate channel.

Co-authors of the paper are James Girton, Gunnar Voet and John Mickett at the UW Applied Physics Lab; Glenn Carter at the University of Hawaii; and Jody Klymak at the University of Victoria. The research was funded by the National Science Foundation.

For more information, contact Alford at 206-221-3257 or Note: Alford will be traveling Sept. 13-20 and best reached via e-mail.

Hannah Hickey | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>