Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat mooring chains scour Rottnest (Australia) seagrass releasing CO2

16.03.2016

The research published in the journal Nature: Scientific Reports surveyed the 'scars' created by mooring chains in the bays around one of Western Australia's iconic tourist destinations.

Dr Oscar Serrano led the research with Professor Paul Lavery and Professor Pere Masque from the Edith Cowan University (ECU) and the Universitat Autònoma de Barcelona (ICTA-UAB and Department of Physics UAB), and said the movement of the chains scraped seagrass off the seafloor.


This photography shows the loss of seagrass in bays around Rottnest Island off the coast of Perth.

Credit: ECU

"As moored boats drift with the currents, wind and waves they drag a heavy chain across the seafloor and that chain acts just like a razor across the skin removing the seagrass," said Oscar Serrano.

"But unlike a 5 o clock shadow -- in this case the seagrass doesn't grow back.

"Unfortunately these protected, calm bays favoured for boat moorings are also prime habitats for seagrass."

Efforts to preserve seagrass meadows by using seagrass friendly mooring lines in some areas is resulting in the recovery of seagrass in some areas of the Island however overall seagrass covers is decreasing.

That's because the size of mooring scars in Stark Bay on the Island's north coast has increased about 500 per cent from 2,000sqm in 1980to 9,000 sqm today due to erosion of the already scarred areas by wave action.

"Once the mooring chains have started the process of scouring, waves will likely continue spreading those scoured areas.

"In Stark Bay, we've seen the scarred areas join up to become large areas devoid of any seagrass."

The destruction of the seagrass meadows has important implications for the ecosystems of Perth's favourite marine playground.

"Seagrass is an important habitat for many species of fish as well as a food source for dugong and turtles," he said.

"More importantly in a global sense, seagrass absorbs carbon dioxide at more than 40 times faster than tropical rainforests.

"What that also means is that when the seagrass meadows are wiped out the carbon dioxide which has been absorbed over hundreds of years, is released back into the atmosphere."

As part of this project, core samples were taken in the scarred areas and where seagrass still existed.

Those sample showed on average more than 75 per cent of carbon absorbed in those seagrass meadows was lost increasing atmospheric carbon dioxide.

Dr Serrano said it is important steps are taken to protect the seagrass meadows around Rottnest Island and the rest of Australia.

"These older style moorings have started to be replaced on Rottnest Island, but that needs to continue here and in other popular mooring sites," he said.

Fast facts on seagrass:

  • Seagrass meadows cover about 90,000 sqkm of seabed off Australia's coast - that's about the same size as Tasmania.

     

  • Seagrass absorbs CO2 about 40 times faster than rainforests and could be a valuable way to offset carbon emissions.

     

  • But as seagrass meadows die off due to climate change and the effects of human development, that CO2 will be released.

     

  • It is notoriously hard to propagate seagrasses and replace meadows lost due to human influences.

Media Contact

Pere Masqué
Pere.masque@uab.cat
61-047-523-8922

 @UAB_info

http://www.uab.es 

Pere Masqué | EurekAlert!

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>