Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach in the Icelandic Volcanic Cloud

27.05.2011
Chlorine in the ash plume of the Icelandic volcano Eyjafjallajökull attacked atmospheric trace gases

One year after the Eyjafjallajökull volcano in Iceland brought European air traffic to a standstill its ash plume revealed a surprising scientific finding: Researchers at the Max Planck Institute for Chemistry in Mainz found that the ash plume contained not only the common volcanic gas sulfur dioxide, but also free chlorine radicals.


CARIBIC flight track from Frankfurt to the British Isles on May 16. The dots indicate air sampling locations. The colored regions depict the extent of the volcanic ash cloud as calculated using meteorological models, with red/yellow indicating high and purple low amounts of particles. Figure taken from Baker et al., 2011 (GRL).

Chlorine radicals are extremely reactive and even small amounts can have a profound impact on local atmospheric chemistry. The findings, which will be published in “Geophysical Research Letters“ give solid evidence of volcanic plume chlorine radical chemistry and allowed calculations of chlorine radical concentrations.

It has been known for some time that volcanic eruptions emit chlorine-containing gases, causing scientists to suspect that highly reactive chlorine radicals could also be present. However, sufficient experimental evidence proved elusive. That changed when researchers analyzed air collected in the ash cloud emitted by the Eyjafjallajökull volcano. During three special flights conducted by Lufthansa in spring 2010 using the CARIBIC atmospheric measurement container, researchers collected air samples which they brought back to their laboratory in Mainz for analysis. Among the compounds they looked for were hydrocarbons.

”Each volcano has its own character”, says Angela Baker, lead author of the paper. “We found that hydrocarbon concentrations were up to 70% lower inside the Eyjafjallajökull ash cloud than outside. Reaction with chlorine radicals was the only realistic explanation for the hydrocarbon losses. And further investigation confirmed that free chlorine radicals were the cause“. The scientists calculated concentrations of up to 66,000 chlorine atoms per cubic centimeter of air. While modest compared to concentrations of other gases, chlorine radicals are normally absent, and it does not take much of these very reactive atoms to have a noticeable impact on atmospheric chemistry.

Hydrocarbons like propane and butane can be found even in the cleanest and most remote parts of the lower atmosphere. Normally they are removed when they react with hydroxyl radicals, but they react many times faster with chlorine radicals. In doing so the chlorine reactions leave their specific ”signature“ on the mixture of hydrocarbons in the air. This signature can, in turn, be used to calculate how many chlorine radicals were present. The Max Planck scientists who calculated volcanic ash cloud chlorine radical concentrations for the first time anticipate that similar results will be found in plumes from other volcanoes, such as the currently erupting Grimsvötn. They also hope that their method will be used during future studies to identify and understand volcanic chlorine radical chemistry.

About the CARIBIC measurement container
CARIBIC is a unique project based on an airfreight container equipped for extensive global scale atmospheric measurement. The CARIBIC system was developed in Germany in cooperation with ten institutes from six European countries. CARIBIC is being coordinated by the Max Planck Institute for Chemistry in Mainz. The flying laboratory travels each month for four long distance flights aboard the Lufthansa Airbus A340-600 “Leverkusen“.

Outside air containing trace gases and aerosol particles is collected during the entire flight by a dedicated inlet probe underneath the aircraft’s hull and fed into the measurement equipment inside the container. The container was deployed during three special flights to probe parts of the volcanic plume of the Eyjafjallyjökull on Iceland that erupted in April and May 2010.

The equipment in the container detects over 50 different atmospheric species, including greenhouse gases, ozone, CFCs, water vapor and aerosols. The detailed dataset helps to locate sources of air pollution, to find out how air pollution is transported and how the atmosphere cleans itself. In this way, by using in-service passenger aircraft one can obtain a precise picture of the atmosphere’s composition and processes at reasonable cost. CARIBIC is enabled by Lufthansa and sponsored by Frankfurt Airport since 2009.

For further information about the measurement container and the project, please visit http://www.caribic-atmospheric.com

About the Max Planck Institute for Chemistry
Research at the Max Planck Institute for Chemistry (260 staff) focuses on the Earth and its atmosphere at different scales, from nano particles up to planets and from ecosystems to global climate change. Three divisions investigate the planetary system by means of field expeditions, laboratory experiments, and computer model studies. Accordingly the institute contributes to fundamental knowledge of natural resources of the Earth and delivers the necessary tools for environmental protection and sustainable development and use of resources. Having an international research school and an e-learning program, the Institute also participates in science education. Next year the Institute celebrates its 100 year of existence. Further information: http://www.mpic.de
Publication:
Angela K. Baker, Armin Rauthe-Schöch, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Peter F. J. van Velthoven, Adam Wisher, David E. Oram
Investigation of chlorine radical chemistry in the Eyjafjallajökull volcanic plume using observed depletions in non-methane hydrocarbons

Geophysical Research Letters, in press, 2011

Contact:
Dr. Angela K. Baker
Max Planck Institute for Chemistry, Mainz, Germany
Phone: +49 6131-305 416
E-mail: angela.baker@mpic.de
Dr. Carl A. M. Brenninkmeijer
Max Planck Institute for Chemistry, Mainz, Germany
Phone: +49 6131-305 305
E-mail: carl.brenninkmeijer@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de
http://www.caribic-atmospheric.com

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>