Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach in the Icelandic Volcanic Cloud

27.05.2011
Chlorine in the ash plume of the Icelandic volcano Eyjafjallajökull attacked atmospheric trace gases

One year after the Eyjafjallajökull volcano in Iceland brought European air traffic to a standstill its ash plume revealed a surprising scientific finding: Researchers at the Max Planck Institute for Chemistry in Mainz found that the ash plume contained not only the common volcanic gas sulfur dioxide, but also free chlorine radicals.


CARIBIC flight track from Frankfurt to the British Isles on May 16. The dots indicate air sampling locations. The colored regions depict the extent of the volcanic ash cloud as calculated using meteorological models, with red/yellow indicating high and purple low amounts of particles. Figure taken from Baker et al., 2011 (GRL).

Chlorine radicals are extremely reactive and even small amounts can have a profound impact on local atmospheric chemistry. The findings, which will be published in “Geophysical Research Letters“ give solid evidence of volcanic plume chlorine radical chemistry and allowed calculations of chlorine radical concentrations.

It has been known for some time that volcanic eruptions emit chlorine-containing gases, causing scientists to suspect that highly reactive chlorine radicals could also be present. However, sufficient experimental evidence proved elusive. That changed when researchers analyzed air collected in the ash cloud emitted by the Eyjafjallajökull volcano. During three special flights conducted by Lufthansa in spring 2010 using the CARIBIC atmospheric measurement container, researchers collected air samples which they brought back to their laboratory in Mainz for analysis. Among the compounds they looked for were hydrocarbons.

”Each volcano has its own character”, says Angela Baker, lead author of the paper. “We found that hydrocarbon concentrations were up to 70% lower inside the Eyjafjallajökull ash cloud than outside. Reaction with chlorine radicals was the only realistic explanation for the hydrocarbon losses. And further investigation confirmed that free chlorine radicals were the cause“. The scientists calculated concentrations of up to 66,000 chlorine atoms per cubic centimeter of air. While modest compared to concentrations of other gases, chlorine radicals are normally absent, and it does not take much of these very reactive atoms to have a noticeable impact on atmospheric chemistry.

Hydrocarbons like propane and butane can be found even in the cleanest and most remote parts of the lower atmosphere. Normally they are removed when they react with hydroxyl radicals, but they react many times faster with chlorine radicals. In doing so the chlorine reactions leave their specific ”signature“ on the mixture of hydrocarbons in the air. This signature can, in turn, be used to calculate how many chlorine radicals were present. The Max Planck scientists who calculated volcanic ash cloud chlorine radical concentrations for the first time anticipate that similar results will be found in plumes from other volcanoes, such as the currently erupting Grimsvötn. They also hope that their method will be used during future studies to identify and understand volcanic chlorine radical chemistry.

About the CARIBIC measurement container
CARIBIC is a unique project based on an airfreight container equipped for extensive global scale atmospheric measurement. The CARIBIC system was developed in Germany in cooperation with ten institutes from six European countries. CARIBIC is being coordinated by the Max Planck Institute for Chemistry in Mainz. The flying laboratory travels each month for four long distance flights aboard the Lufthansa Airbus A340-600 “Leverkusen“.

Outside air containing trace gases and aerosol particles is collected during the entire flight by a dedicated inlet probe underneath the aircraft’s hull and fed into the measurement equipment inside the container. The container was deployed during three special flights to probe parts of the volcanic plume of the Eyjafjallyjökull on Iceland that erupted in April and May 2010.

The equipment in the container detects over 50 different atmospheric species, including greenhouse gases, ozone, CFCs, water vapor and aerosols. The detailed dataset helps to locate sources of air pollution, to find out how air pollution is transported and how the atmosphere cleans itself. In this way, by using in-service passenger aircraft one can obtain a precise picture of the atmosphere’s composition and processes at reasonable cost. CARIBIC is enabled by Lufthansa and sponsored by Frankfurt Airport since 2009.

For further information about the measurement container and the project, please visit http://www.caribic-atmospheric.com

About the Max Planck Institute for Chemistry
Research at the Max Planck Institute for Chemistry (260 staff) focuses on the Earth and its atmosphere at different scales, from nano particles up to planets and from ecosystems to global climate change. Three divisions investigate the planetary system by means of field expeditions, laboratory experiments, and computer model studies. Accordingly the institute contributes to fundamental knowledge of natural resources of the Earth and delivers the necessary tools for environmental protection and sustainable development and use of resources. Having an international research school and an e-learning program, the Institute also participates in science education. Next year the Institute celebrates its 100 year of existence. Further information: http://www.mpic.de
Publication:
Angela K. Baker, Armin Rauthe-Schöch, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Peter F. J. van Velthoven, Adam Wisher, David E. Oram
Investigation of chlorine radical chemistry in the Eyjafjallajökull volcanic plume using observed depletions in non-methane hydrocarbons

Geophysical Research Letters, in press, 2011

Contact:
Dr. Angela K. Baker
Max Planck Institute for Chemistry, Mainz, Germany
Phone: +49 6131-305 416
E-mail: angela.baker@mpic.de
Dr. Carl A. M. Brenninkmeijer
Max Planck Institute for Chemistry, Mainz, Germany
Phone: +49 6131-305 305
E-mail: carl.brenninkmeijer@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de
http://www.caribic-atmospheric.com

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>