Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avoiding the hothouse and the icehouse

11.02.2009
By controlling emissions of fossil fuels we may be able to greatly delay the start of the next ice age, new research from the Niels Bohr Institute at University of Copenhagen concludes. The results have been published in the scientific magazine, Geophysical Research Letters.

From an Earth history perspective, we are living in cold times. The greatest climate challenge mankind has faced has been surviving ice ages that have dominated climate during the past million years.

Therefore it is not surprising that back in the relatively cold 1970's prominent scientists like Soviet Union climatologist Mikhail Budyko greeted man-made global warming from CO2 emissions as a way to keep us out of future ice ages. And there are still those around who feel that continued high fossil fuel emissions are good for this reason. But is the extreme global warming that would result from this a reasonable, and indeed necessary, price to pay to keep ice ages at bay?

In a paper published in the scientific journal Geophysical Research Letters 'Long time management of fossil fuels to limit global warming and avoid ice age onsets', Professor Gary Shaffer of the Niels Bohr Institute, University of Copenhagen, and also leader of the research team at the Danish Center for Earth System Science (DCESS), outlines a way to keep the Earth out of both Hot- and Icehouses for a half a million years into the future.

Building up ice sheets

Ice ages start when conditions at high northern latitudes allow winter snowfall to persist over the summer for enough years to accumulate and build ice sheets. Such conditions depend mainly on summer solar radiation there and atmospheric CO2 concentration. This radiation is modulated on time scales of 20.000, 40.000 and 100.000 years by changes in the Earth's orbit and orientation. Critical summer solar radiation for initiating ice sheet growth can be significantly lower for higher atmospheric CO2 with its greenhouse warming effect.

Professor Shaffer made long projections over the next 500,000 years with the DCESS Earth System Model to calculate the evolution of atmospheric CO2 for different fossil fuel emission strategies. He also used results of a coupled climate-ice sheet model for the dependency on atmospheric CO2 of critical summer solar radiation at high northern latitudes for an ice age onset.

The results show global warming of almost 5 degrees Celsius above present for a "business as usual" scenario whereby all 5000 billion tons of fossil fuel carbon in accessible reserves are burned within the next few centuries. In this scenario the onset of next ice age was postponed to about 170,000 years from now.

Carbon can postpone ice age

However, for a management scenario whereby fossil fuel use was reduced globally by 20% in 2020 and 60% in 2050 (compared to 1990 levels), maximum global warming was less than one degree Celsius above present. Similar reductions in fossil fuel use have been proposed by various countries like Germany and Great Britain.

In this scenario, combustion pulses of large remaining fossil fuel reserves were then tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer radiation minima as long as possible. In this way our present equable interglacial climate was extended for about 500,000 years, three times as long as in the "business as usual" case.

Valuable climate regulation

"It appears to be well established that the strong ice ages the Earth has experienced over the past million years were ushered in by declining levels of atmospheric CO2. Our present atmospheric CO2 level of about 385 parts per million is already higher than before the transition to these ice ages" Professor Shaffer notes and adds that "The Earth's orbit is nearly circular at present meaning that the present minimum in summer radiation at high northern latitudes is not very deep. We have already increased atmospheric CO2 enough to keep us out of the next ice age for at least the next 55,000 years for this orbital setup".

He concludes that "Fossil fuel reserves may be too valuable for regulating climate far into the future to allow the reserves to be consumed within the next few centuries. The price of extreme global warming to avoid ice ages is a high and indeed unnecessary price to pay."

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.agu.org/pubs/crossref/2009/2008GL036294.shtml

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>