Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aurora Borealis: Icebreaker, Deep-Sea Drilling Vessel and Multi-Purpose Research Ship for the Polar Seas

04.12.2008
Technical Design of the new European Research Icebreaker "Aurora Borealis" finished

The Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association and the engineering company Wärtsilä Ship Design Germany (formerly Schiffko GmbH) today presented the technical design of the European Research Icebreaker "Aurora Borealis" in Berlin. "Aurora Borealis" will be a unique vessel - a combination of a heavy icebreaker, a scientific drilling ship and a multi-purpose research platform that can operate year-round in all polar waters.

The construction of the "Aurora Borealis" was already recommended by the German Science and Humanities Council back in 2006. The anticipated construction costs as of 2008 are around 650 Million Euro. The German Federal Ministry for Education and Research funded the technical design process and planning works with 5.2 Million Euro, as a precondition for a later realisation.

Subject to the condition of sufficient financial support, the preparations for the construction of the vessel shall be finished by 2011. Construction itself could start as early as 2012, resulting in the first scientific operations in about 2014.

This most sophisticated research vessel worldwide shall be realised within a European cooperation. European nations have a particular interest in understanding the Arctic environment and its potential for change because their territories reach into high northern latitudes and because Europe is under the steady influence of, and in exchange with the Arctic environment. Therefore, "Aurora Borealis" was included in the priority list of the European Commission's "European Strategy Forum on Research Infrastructures" (ESFRI) within the 7th Framework Program as one of only seven projects in the "Environmental Sciences" section. Following up on this process, fifteen institutions and agencies from ten European nations, including Norway and the Russian Federation, have founded the "European Research Icebreaker Consortium" (ERICON), which is funded by the European Commission for the preparatory phase with 4.5 Million Euro.

Germany has gained a remarkable reputation in polar research with the operations of the research icebreaker "Polarstern" for more than 25 years. The Alfred Wegener Institute alone is globally connected by more than 74 cooperational agreements to the most important international research centres for polar and marine research. While "Polarstern" will be available for German polar research as before, "Aurora Borealis" shall strengthen the operational capabilities for the science community, enabling German and European scientists to maintain a sustained leading position in the international scientific competition for the next decades to come.

To date, research icebreakers of comparable size and capacity for year-round autonomous operations in all polar waters are neither available for commercial nor for scientific operations worldwide. Thus "Aurora Borealis" shall facilitate for the first time all-seasons expeditions into some of the most extreme realms of our planet und help gain new insights into the history, the climatic variability and the present environmental conditions of the polar regions.

If the unresolved questions of climate change and variability are to be answered, one has to access the Arctic Ocean to perform scientific drilling - and be prepared for pack ice. "Aurora Borealis" will thus be equipped with a drilling rig that enables researchers to drill more than 1000 m into the sea-floor, in water depths between 100 and 5000 m. For the first time, scientific deep-sea drilling will become possible even in drifting pack ice, without support by additional icebreakers. To perform these drilling operations, "Aurora Borealis has to be kept exactly on position in the floating ice. A dynamic positioning system capable for manoeuvring in ice is mandatory for this task - an absolute novelty in the shipping industry. Extensive model tests in the ice tanks of the Hamburg Ship Model Basin (HSVA) and Aker Arctic Helsinki have proven that "Aurora Borealis" is indeed able to dynamically position in ice cover with thickness of two metres and more.

Another unique characteristic of "Aurora Borealis" are the two moon pools of seven by seven metres. These are continuous vertical funnels in the midst of the hull into the water below the vessel that enable scientists to deploy their equipment into the ocean without being subject to wind, waves and ice. The aft moon pool is mainly dedicated to drilling operations, while the forward moon pool is reserved for most other scientific works. This allows as a first the deployment of very sensitive and expensive equipment, e.g. remotely operated or autonomous underwater vehicles within closed sea ice cover. Scientific laboratories are located on several decks around the moon pool, which is designed in an atrium-like shape with circular walkways and preparation areas. In order to optimally equip the ship even for any kind of specialised expeditions, containerised laboratories can be also loaded here and become fully integrated into the scientific workflow on board.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and makes available to international science important infrastructure, e.g. the research icebreaker "Polarstern" and research stations in the Arctic and Antarctic. AWI is one of 15 research centres within the Helmholtz-Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de/en/home/
http://www.awi.de/en/infrastructure/ships/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>