Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Array of Arrays’ Coaxing Secrets from Unfelt Seismic Tremor Events

15.12.2010
Every 15 months or so, an unfelt earthquake occurs in western Washington and travels northward to Canada’s Vancouver Island. The episode typically releases as much energy as a magnitude 6.5 earthquake, but it does so gradually over a month.

New technology is letting University of Washington researchers get a much better picture of how these episodic tremor events relate to potentially catastrophic earthquakes, perhaps as powerful as magnitude 9, that occur every 300 to 500 years in the Cascadia subduction zone in western Washington, Oregon and British Columbia.

“Depending on where the tremor is, a different part of the fault is being loaded,” said Abhijit Ghosh, a UW doctoral student in Earth and space sciences, who is presenting the most recent findings Monday (Dec. 13) at the annual meeting of the American Geophysical Union in San Francisco.

Scientists discovered episodic tremor about a decade ago and have been trying to understand how it figures in the seismic hierarchy of the earthquake-prone Pacific Northwest. In 2008 on Washington’s Olympic Peninsula, UW scientists deployed an array of 80 seismic sensors that act something like a radio antenna, except that instead of bringing in distant radio waves it collects signals from tremor events. Now there are eight such arrays, each armed with 20 to 30 sensors, a complex the scientists call the “array of arrays.”

It was known that tremor events generally start near Olympia, Wash., and march slowly northward on the Olympic Peninsula, eventually reaching Canada’s Vancouver Island and running their course in several weeks.

But Ghosh has found the tremor movement to be far more complex. The source of the tremor generates streaks that travel 60 miles per hour back and forth along a southwest-northeast track. Several hours of this activity produces what shows up as bands of tremor that steadily migrate northward at a much slower speed, about 6 miles per day.

The effect is similar to someone painting a wall, with the wall representing the area where the tremor occurs and paint representing tremor streaks. Eventually the brush strokes will cover the wall.

The arrays are producing enough data for scientists to locate the precise latitude and longitude where a signal originates, Ghosh said, but more work must be done to determine precise depths. It could be that the signal comes from the same depth, about 25 miles, as the subduction fault zone, but that is unclear.

“Because the signal is very different from our garden variety earthquakes, we need new techniques to determine the source of the signal, and this is one step toward that,” Ghosh said. “With the array of arrays we should be able to see a greater quantity of clear signal, and we do. We see more tremor – way more tremor – than with conventional methods.”

Researchers have known for several years that these tremor events add to the fault stress in the Cascadia subduction zone, where the Juan de Fuca tectonic plate dives beneath the North American plate that is directly under the most populous areas of Washington, Oregon and British Columbia. The last great Cascadia subduction zone earthquake, estimated at magnitude 9, occurred in January 1700 and generated a tsunami that traveled to Japan.

The arrays are beginning to produce a better understanding of how tremor events are related to the Cascadia fault zone. For example, the southwest-northeast angle of the tremor streaks and bands matches almost exactly the angle, about 54 degrees, at which the Juan de Fuca plate meets the North American plate.

“We have already seen different types of tremor migration in Cascadia, and there might be even more,” Ghosh said. “With high-precision locating technology, we are getting a clearer picture.”

For more information, contact Ghosh at aghosh.earth@gmail.com or 404-667-7470, or John Vidale, UW professor of Earth and space sciences, at vidale@uw.edu or 310-210-2131.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>