Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arctic snow harbors deadly assassin

Heavy and prolonged snowfall can bring about unexpected conditions that encourage fungal growth, leading to the death of plants in the Arctic, according to experts.

A new international study confirms that whilst snow has an insulating effect which helps plants to grow bigger, heavy and prolonged snow can, in certain circumstances, also encourage the rapid and extensive growth of killer fungal strains.

The research results, published in the journal Nature Climate Change, show for the first time the potential long term effects of unexpected fungal development on an arctic landscape. Extensive damage to a pervasive species under snowier conditions would leave gaps for another plant to take its place over time but could also alter the food–web for insects, voles, lemmings and their predators.

Co-author of the report, Dr. Robert Baxter, School of Biological and Biomedical Sciences, Durham University, said: "We were surprised to find that this extremely hardy tundra vegetation was killed off by fungal attack.

"In the first few years, as expected, the insulating effect of the snow helped the vegetation to grow, but after six years a tipping point was reached where the fungus spread with great speed and destroyed the plants.

"We need to look more carefully in the future at longer term vegetation and fungus life cycles to see if this is something that could recur and be more destructive over time."

The research team from Durham University, UK; Umeå University, the Swedish University of Agricultural Sciences, Uppsala, Sweden; and the Finnish Forest Research Institute, compared the effects of normal snowfall conditions and increased snow conditions on vegetation.

Researchers used snow fences to maintain increased snow conditions, and found that the fungus, Arwidssonia empetri, increased under heavier and prolonged snow cover killing the majority of the shoots of one of the dominant plant species in that area – the dwarf shrub Empetrum hermaphroditum. The team's unexpected finding followed a decision to keep the experiment running longer than was originally planned.

The researchers believe that the findings highlight unforeseen elements that should be factored into future modelling of the impacts of climate change and its effects on vegetation and food-web chains.

Co-author of the report, Johan Olofsson, Department of Ecology and Environmental Science, Umeå University, Sweden, said: "We set out to look at the effects of climate change and the potential of heavier precipitation and snowfall on plants and the processes that influence growth, decomposition and soil nutrients.

"Shrubs are an important part of the arctic vegetation and we did not expect to find a deadly species-to-species effect influenced by this manipulated snow accumulation."

Snow usually protects arctic plants through the long winter period as it maintains a warmer local environment around the overwintering plants and helps them to grow bigger and faster.

During the seven year experiment, the researchers observed steady plant growth under the protection of the snow's insulating blanket. In year six, the fungus spread rapidly, killing the plant and changing the vegetation from a natural carbon sink to a net carbon source.

Co-author of the report, Lars Ericson, Department of Ecology and Environmental Science, Umeå University, Sweden, said: "We discovered some surprising interactions between plants and other organisms in an area that is very important for the world's climate. The results will enable us to have a better understanding of longer term climate change effects and extreme weather events, locally and regionally."

The study has been funded by The Natural Environment Research Council, UK; the Centre for Environmental research in Umeå, Sweden; and the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning.

The Abisko Scientific Research Station provided accommodation, laboratory facilities and funding during the periods of field work. The research team is continuing the study to investigate the extent and duration of vegetation change under altered snow conditions.

Dionne Hamil | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>