Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How is the Arctic Ocean changing? – RV Polarstern launches expedition to Arctic Ocean

14.06.2011
On coming Wednesday, 15 June, the research vessel Polarstern of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association will set off on its 26th arctic expedition. Over 130 scientists from research institutions in six countries will take part in three legs of the voyage.

First of all, at long-term stations oceanographers and biologists will investigate how oceanic currents as well as the animal and plant world are changing between Spitsbergen and Greenland. Beginning in August, physical, biological and chemical changes in the central Arctic will be recorded. RV Polarstern is expected back in Bremerhaven on 7 October.

In the Fram Strait between Spitsbergen and Greenland oceanographic measuring devices have been continuously recording temperature, salt concentration, flow speed and direction for 14 years. Moorings with the sensors that have to be replaced after one or two years extend down to a depth of over 2,500 metres. To supplement these stationary measurements, a free-floating device will now be additionally employed for three months. The so-called Seaglider submerges down to a depth of 1,000 metres along its course line in order to carry out measurements. In between it regularly returns to the surface, transmits the data via satellite and receives new position coordinates. The recorded data show how the exchange of water masses and heat changes between the Arctic Ocean and the North Atlantic. The Fram Strait is the only deepwater connection between the two marine areas and therefore permits conclusions regarding the influence of the polar marine regions on the global ocean.

The second area under study is the so-called AWI HAUSGARTEN. It is the northernmost of ten observatories altogether in the European network ESONET (European Seafloor Observatory Network). Using this deep-sea long-term observatory of the Alfred Wegener Institute, biologists want to examine how communities of organisms in the open water and on the bottom of the deep sea react to the progressive warming of the nordic seas. In this context they will investigate the critical physiological and ecological limits of selected species. This makes it possible to draw conclusions as to whether organisms are able to tolerate increasing temperatures, for example, or whether they withdraw from the region as warming progresses. With the help of a remotely operated vehicle (ROV) chartered from the IFM-GEOMAR marine research institute in Kiel experiments will also be conducted on the floor of the deep sea. Another underwater vehicle, which has a length of around five metres, is also unmanned, but operates autonomously, will be used at water depths down to approx. 600 metres as well as just under the Arctic sea ice. By means of measuring instruments that were newly developed at the Alfred Wegener Institute, it records, among other things, the distribution of unicellular algae and the carbon dioxide concentration near the water surface. Furthermore, the scientists plan to take seafloor samples from a marine area in which fishery echosounders recently detected numerous gas flares. They indicate that probably enormous quantities of methane, a greenhouse gas with certain relevance for the climate, are released from the seafloor at water depths of around 400 metres west of Svalbard.

As of the beginning of August, the research vessel Polarstern will then set course for the Arctic Ocean. The focus will be on physical, biological and chemical changes in the central Arctic. The reduction of sea ice and the variability of ocean circulation and its heat and fresh water budgets are tightly linked with changes in the gas exchange as well as with biogeochemical and ecosystem processes in the sea ice and in the entire water column. To understand these interrelations better, the members of the expedition will take water and ice samples from the shallow Eurasian shelf seas all the way to the deep Canadian Basin and from the open sea to the pack ice. In addition, the researchers will install measuring devices that drift through the Arctic Ocean on ice floes for months and thus supply valuable data from this not easily accessible region. They then transmit these data to land via satellite. A subsequent comparison of the data to measurements from previous expeditions may indicate how the climate is changing in the Arctic. To continuously monitor the further progress of the changes, the researchers will moor measuring devices and sample-taking equipment, which will be picked up during another expedition to this marine region in the coming year.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and middle latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls |
Further information:
http://www.awi.de/en/home

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>