Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Antarctica turned white

29.01.2013
Weathering of Antarctic rocks lowers atmospheric carbon dioxide concentration during the Eocene-Oligocene transition

Thirty four million years ago, Antarctica was covered with temperate forests that included beech trees and cycads. Then, over a geologically short period of 200,000 years, global temperatures cooled and Antarctica became the frozen continent it is today. These pervasive climatic changes may be linked to weathering processes on the Antarctic continent.


Typical deep ocean sediment cores. Scientists use geochemical signals hidden in these sediments to reconstruct Earth’s climate history.
Katharina Pahnke

Dr. Chandranath Basak of the Max Planck Research Group Marine Isotope Geochemistry located at the University of Oldenburg, and his co-author Dr. Ellen Martin from the University of Florida found out that weathering of different types of rocks contributed towards the observed climate change at the Eocene/Oligocene boundary.

For this study they used deep-sea sediments obtained from the Integrated Ocean Drilling Program, a large-scale programme for scientific ocean drilling. In their publication in the scientific journal Nature Geoscience they suggest that weathering processes on the Antarctic continent may have been instrumental in lowering the carbon dioxide concentrations in the atmosphere, causing the observed climate cooling and subsequent ice growth.

When rocks are subjected to weathering, they can change the chemistry of the ocean, and the remnants sooner or later end up at the bottom of the ocean. Scientists can “read” such events in Earth’s history from these sediments, deposited over millions of years. They use characteristics in the composition of the sediment by which they can reconstruct processes in the past. Dr. Basak and Dr. Martin have analysed lead (Pb) isotopes in sediment samples and used a new approach to study weathering of the continents in the past.

“This method allows us to differentiate between chemical weathering, meaning alteration by chemical processes, and physical weathering, for example breakdown by glaciers”, says Dr. Basak. They could find evidence of carbonate rock weathering on Antarctica during ice growth, which may have contributed to chemical changes in the ocean that led to enhanced carbonate deposition, which is referred to as an ocean de-acidification event in contrast to modern ocean acidification.

Chandranath Basak says: “It is not easy to reconstruct the processes associated with climate change that occurred millions of years ago during the Eocene-Oligocene transition. Yet with our work we believe we could improve our understanding of this transitional period.”

For further information please contact:
Dr. Chandranath Basak, cbasak@mpi-bremen.de Telephone: 0441 798 3359
Or the press office:
Dr. Rita Dunker rdunker@mpi-bremen.de Telephone 0421 2028 856
Dr. Manfred Schlösser mschloes@mpi-bremen.de Telephone 0421 2028 704
Involved Institutions:
Max Planck Institute for Marine Microbiology
Max Planck Research Group for Marine Isotope Geochemistry, Instutite for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany

University of Florida, Department of Geological Sciences, Gainsville, USA

Original Publication:
Basak, C. and Martin, E.E. (2013). Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition. Nature Geosciences, advanced online Publication.

Doi: 10.1038/NGEO1707

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>