Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antarctica glacier retreat creates new carbon dioxide store

Large blooms of tiny marine plants flourish in Antarctic waters left exposed by the recent and rapid melting of ice shelves and glaciers around the Antarctic Peninsula

Large blooms of tiny marine plants called phytoplankton are flourishing in areas of open water left exposed by the recent and rapid melting of ice shelves and glaciers around the Antarctic Peninsula.

This remarkable colonisation is having a beneficial impact on climate change. As the blooms die back phytoplankton sinks to the sea-bed where it can store carbon for thousands or millions of years.

Reporting this week in the journal Global Change Biology, scientists from British Antarctic Survey (BAS) estimate that this new natural 'sink' is taking an estimated 3.5 million tonnes* of carbon from the ocean and atmosphere each year.

Lead author, Professor Lloyd Peck from BAS says,

"Although this is a small amount of carbon compared to global emissions of greenhouse gases in the atmosphere it is nevertheless an important discovery. It shows nature's ability to thrive in the face of adversity. We need to factor this natural carbon-absorption into our calculations and models to predict future climate change. So far we don't know if we will see more events like this around the rest of Antarctica's coast but it's something we'll be keeping a close eye on."

Professor Peck and his colleagues compared records of coastal glacial retreat with records of the amount of chlorophyll (green plant pigment essential for photosynthesis) in the ocean. They found that over the past 50 years, melting ice has opened up at least 24,000 km2 of new open water (an area similar to the size of Wales) – and this has been colonised by carbon-absorbing phytoplankton. According to the authors this new bloom is the second largest factor acting against climate change so far discovered on Earth (the largest is new forest growth on land in the Arctic).

Professor Peck continues, "Elsewhere in the world human activity is undermining the ability of oceans and marine ecosystems to capture and store carbon. At present, there is little change in ice shelves and coastal glaciers away from the Antarctic Peninsula, but if more Antarctic ice is lost as a result of climate change then these new blooms have the potential to be a significant biological sink for carbon."

Issued by the British Antarctic Survey Press Office
Heather Martin, Tel: +44 (0)1223 221414; mobile: 07740 822229 email:;

Linda Capper, Tel: +44 (0)1223 221448; mobile: 07714 233744 email:

Author's contact details:

Professor Lloyd Peck. Tel: +44 (0)1223 221603; email

Notes for editors: Stunning broadcast-quality footage and stills of Antarctica, as well as location maps are available from the BAS Press Office as above.

Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica by Lloyd S. Peck, David K. A. Barnes, Alison J Cook, Andrew H Fleming and Andrew Clarke is published online this month in the journal Global Change Biology.

Phytoplankton use chlorophyll and other pigments to absorb sunlight for photosynthesis, and when they grow in large numbers, they change the way the ocean surface reflects sunlight. They are eaten by krill and are the foundation of the ocean food web. Animals such as sponges and corals also consume phytoplankton. They can live for decades to hundreds of years and when they die they form mats on the seabed that are buried under sedimentation.

*The 3.5 million tonnes of carbon taken from the ocean and atmosphere is equivalent to 12.8 million tonnes of CO2.

Global carbon dioxide emissions from fossil fuel combustion and land use change reached 8.7 billion tonnes of carbon in 2007.

Sea ice loss and retreat of coastal glaciers on the Antarctic Peninsula were studied using historical accounts, aerial photographs and satellite images. This shows that seven of the major ice shelves and 87% of the 244 marine glaciers have retreated over the past 50 years.

The 24,000 km2 of new open water is approximately the size of Vermont, New Hampshire, New Jersey, Belize or Israel.

A glacier — is a 'river of ice' that is fed by the accumulation of snow. Glaciers drain ice from the mountains to lower levels, where the ice either melts, breaks away into the sea as icebergs, or feeds into an ice shelf.

Ice sheet — is the huge mass of ice, up to 4km thick that covers bedrock in Antarctica or Greenland. It flows from the centre of the continent towards the coast where it feeds ice shelves.

Ice shelf — is the floating extension of the grounded ice sheet. It is composed of freshwater ice that originally fell as snow, either in situ or inland and brought to the ice shelf by glaciers. As they are already floating, any disintegration will have no impact on sea level. Sea level will rise only if the ice held back by the ice shelf flows more quickly onto the sea.

British Antarctic Survey (BAS), a component of the Natural Environment Research Council, delivers world-leading interdisciplinary research in the Polar Regions. Its skilled science and support staff based in Cambridge, Antarctica and the Arctic, work together to deliver research that underpins a productive economy and contributes to a sustainable world. Its numerous national and international collaborations, leadership role in Antarctic affairs and excellent infrastructure help ensure that the UK maintains a world leading position. BAS has over 450 staff and operates five research stations, two Royal Research Ships and five aircraft in and around Antarctica

Linda Capper | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>