Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Antarctic Worms Warm to Changing Climate?

22.12.2011
Researchers at the University of Delaware are examining tiny worms that inhabit the frigid sea off Antarctica to learn not only how these organisms adapt to the severe cold, but how they will survive as ocean temperatures increase.

The National Science Foundation study, led by Adam Marsh, associate professor of marine biosciences in UD’s College of Earth, Ocean, and Environment, also will compare the process of temperature adaptation in the polar worm, known scientifically as Capitella perarmata, with that of a close relative that inhabits temperate waters, Capitella teleta.

“By comparing these two marine species, we hope to assess how a polar environment shapes responses to environmental stress,” says Marsh. “By better understanding how the environment can trigger genetic changes – through the genes the polar worm turns on or ‘expresses’ – we can gain insight into the potential impact of global warming on marine ecosystems.”

Arriving in late August at McMurdo Station on Ross Island, Antarctica’s largest outpost, Marsh and his research team undertook a series of dives in the freezing waters over the next two months to collect the polar sea worms, which are segmented like earthworms but belong to the class known as “polychaetes.”

At a mere half-inch long and no thicker than the lead in a No. 2 pencil, Capitella perarmata would be a challenge to collect even on dry land. Because the worms feed on organic matter, the researchers have found the most abundant concentrations in the top layer of sediment from McMurdo Station’s old sewage outfall. The divers collect buckets filled with sediment, from which the worms are sieved.

Just getting to the underwater site takes some doing, as UD doctoral student Annamarie Pasqualone points out. Pasqualone, who is from Medford, N.J., stayed on to complete the experiments in Crary Laboratory, McMurdo Station’s science building. She will depart the frozen continent before Christmas to travel back to Delaware.

“A three-foot-diameter hole needs to be drilled through about seven feet of ice, and then a heated dive hut must be placed over the newly drilled hole in order to prevent it from freezing over -- and to keep the divers happy when they surface out of the seawater, which is at a temperature of minus one degree Celsius,” she says.

Pasqualone has been assessing the worms’ physiological and biochemical responses as they acclimate to an increase in environmental temperature from -1.5 degrees C to 4 degrees C in laboratory experiments. Additional experiments are under way in Marsh’s lab at UD’s Hugh R. Sharp Campus in Lewes.

For this project, the Marsh laboratory is focusing on identifying epigenetic changes in DNA methylation in these worms – in other words, how the environment is influencing the worms’ genetic code. DNA methylation is a process in animals and plants where environmental signals are “imprinted” on genes in a genome by chemical modification of cytosine—one of the bases of the DNA code—to 5’-methyl-cytosine. By tracking changes in metabolic activity and locating genes where methylation changes are active, the scientists will be able to pinpoint the types of genes involved in the temperature acclimation process.

Marsh says he hopes the results of the study will shed light on the ability of some Antarctic species to survive current levels of ocean warming.

“The coastal waters around Antarctica have been at very stable temperatures for millions of years,” Marsh says. “This low-temperature environment has led to the evolution of many endemic polar marine species. As global sea-surface temperatures rise, temperatures in Antarctica will also increase. For animals that are used to constant cold conditions, even slight increases in temperature can have large impacts on survival.”

Data yielded by the study on how extreme environmental conditions help shape genes and proteins also could have important economic applications.

Marsh and colleague Joe Grzymski at the Desert Research Institute in Nevada recently co-founded Evozym Biologics, a startup company, to accelerate the discovery of useful proteins for developing new antibiotic drugs and biofuels. The catalyst was their respective research on other Antarctic “extremophiles”—soil microbes for Grzymski and Antarctic sea urchins for Marsh.

“This information has a huge potential for commercial use in the field of synthetic biology,” Marsh notes. “Many of the industrial-scale processes that utilize enzymes require that these proteins are synthetically designed to work efficiently under extreme conditions. In bioreactors, for example, conditions of high heat or high acid are common and require bioengineered proteins for increased stability and catalytic efficiency.”

Marsh’s Antarctic team also included Stacy Kim, a scientist at California’s Moss Landing Marine Laboratories, Stephanie Guida, a UD doctoral student from Milton, Del., and Michael League, a science teacher at Millsboro Middle School in Millsboro, Del.

League, who earned his bachelor’s degree in biology and education from UD, participated through the NSF-funded PolarTrec program, which provides K-12 teachers with hands-on field research experience in polar regions. View League’s journals and photographs at this website (http://www.polartrec.com/member/michael-league).

For the full article with images, see
http://www.udel.edu/udaily/2012/dec/marsh-antarctic-worms-121911.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>