Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient permafrost quickly transforms to carbon dioxide upon thaw

27.10.2015

Researchers from the U.S. Geological Survey and key academic partners including the University of Colorado Boulder have quantified how rapidly ancient permafrost decomposes upon thawing and how much carbon dioxide is produced in the process.

Huge stores of organic carbon in permafrost soils -- frozen for hundreds to tens of thousands of years across high northern latitudes worldwide -- are currently isolated from the modern day carbon cycle.


This is a general view of a 35-meter-high riverbank exposure of the ice-rich syngenetic permafrost (yedoma) containing large ice wedges along the Itkillik River in northern Alaska.

Photo courtesy Mikhail Kanevskiy; University of Alaska Fairbanks, Institute of Northern Engineering

However, if thawed by changing climate conditions, wildfire, or other disturbances, this massive carbon reservoir could decompose and be emitted as the greenhouse gases carbon dioxide and methane, or be carried as dissolved organic carbon to streams and rivers.

"Many scientists worldwide are now investigating the complicated potential end results of thawing permafrost," said Rob Striegl, USGS scientist and study co-author.

"There are critical questions to consider, such as: How much of the stored permafrost carbon might thaw in a future climate? Where will it go? And, what are the consequences for our climate and our aquatic ecosystems?"

At a newly excavated tunnel operated by the U.S. Army Corps of Engineers near Fairbanks, Alaska, a research team from USGS, CU-Boulder and and Florida State University set out to determine how rapidly the dissolved organic carbon from ancient (about 35,000 years old) "yedoma" soils decomposes upon soil thaw and how much carbon dioxide is produced.

Yedoma is a distinct type of permafrost soil found across Alaska and Siberia that accounts for a significant portion of the permafrost soil carbon pool. These soils were deposited as wind-blown silts in the late Pleistocene age and froze soon after they were formed.

"It had previously been assumed that permafrost soil carbon this old was already degraded and not susceptible to rapid decomposition upon thaw," said Kim Wickland, the USGS scientist who led the team.

The researchers found that more than half of the dissolved organic carbon in yedoma permafrost was decomposed within one week after thawing. About 50 percent of that carbon was converted to carbon dioxide, while the rest likely became microbial biomass.

"What this study adds is that we show what makes permafrost so biodegradable," said Travis Drake, the lead author of the research. "Immediately upon thaw, microbes start using the carbon and then it is sent back into the atmosphere." Drake was both a USGS employee and a master's degree student at CU-Boulder during the investigation.

The researchers attribute this rapid decomposition to high concentrations of low molecular weight organic acids in the dissolved organic carbon, which are known to be easily degradable and are not usually present at high concentrations in other soils.

These rates are among the fastest permafrost decomposition rates that have been documented. It is the first study to link rapid microbial consumption of ancient permafrost soil-derived dissolved organic carbon to the production of carbon dioxide.

An important implication of the study for aquatic ecosystems is that dissolved organic carbon released by thawing yedoma permafrost will be quickly converted to carbon dioxide and emitted to the atmosphere from soils or small streams before it can be transported to major rivers or coastal regions.

###

Co-authors on the study include CU-Boulder Professor Diane McKnight and Florida State University faculty member Robert Spencer. McKnight is affiliated with the Center for Water, Earth Science and Technology (CWEST) in CU-Boulder's Institute of Arctic and Alpine Research. CWEST is a partnership of CU-Boulder and the USGS.

The research was recently published in the Proceedings of the National Academy of Sciences. The National Science Foundation's Division of Polar Programs provided essential support for the investigation.

Contact:

Jon Campbell, USGS, 703-648-4180
jon.campbell@usgs.gov

Kim Wickland, 303-541-3072
kpwick@usgs.gov

Jim Scott, CU media relations, 303-492-3114
jim.scott@colorado.edu

Jon Campbell | EurekAlert!

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>