Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient oceans offer new insight into the origins of animal life

14.09.2009
Analysis of a rock type found only in the world's oldest oceans has shed new light on how large animals first got a foothold on the Earth.

A scientific team led by Professor Robert Frei at the University of Copenhagen in Denmark, and including scientists from Newcastle University, UK, and universities in Uruguay and Southern Denmark, have for the first time managed to plot the rise and fall of oxygen levels in the Earth's atmosphere over the last 3.8 billion years.

By analysing the isotopes of chromium in iron-rich sediments formed in the ancient oceans, the team has found that a rise in atmospheric oxygen levels 580 million years ago was closely followed by the evolution of animal life.

Published today in the academic journal Nature, the data offers new insight into how animal life – and ultimately humans – first came to roam the planet.

"Because animals evolved in the sea, most previous research has focussed on oceanic oxygen levels," explains Newcastle University's Dr Simon Poulton, one of the authors of the paper.

"Our research confirms for the first time that a rise in atmospheric oxygen was the driving force for oxygenation of the oceans 580 million years ago, and that this was the catalyst for the evolution of large complex animals."

The study

Distinctive chromium isotope signals occur when continental rocks are altered and weathered as a result of oxygen levels rising in the atmosphere.

The chromium released by this weathering is then washed into the seas and deposited in the deepest oceans - trapped in iron-rich rocks on the sea bed.

Using this new data, the research team has not only been able to establish the trigger for the evolution of animals, but have also demonstrated that oxygen began to pulse into the atmosphere earlier than previously thought.

"Oxygen levels actually began to rise 2.8 billion years ago" explains Dr Poulton.

"But instead of this rise being steady and gradual over time, what we saw in our data was a very unstable situation with short-lived episodes of free oxygen in the atmosphere early in Earth's history, followed by plummeting levels around 2 billion years ago.

"It was not until a second rise in atmospheric oxygen 580 million years ago that larger complex animals were able to get a foothold on the Earth."

Dr. Simon Poulton | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>