Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient oceans offer new insight into the origins of animal life

14.09.2009
Analysis of a rock type found only in the world's oldest oceans has shed new light on how large animals first got a foothold on the Earth.

A scientific team led by Professor Robert Frei at the University of Copenhagen in Denmark, and including scientists from Newcastle University, UK, and universities in Uruguay and Southern Denmark, have for the first time managed to plot the rise and fall of oxygen levels in the Earth's atmosphere over the last 3.8 billion years.

By analysing the isotopes of chromium in iron-rich sediments formed in the ancient oceans, the team has found that a rise in atmospheric oxygen levels 580 million years ago was closely followed by the evolution of animal life.

Published today in the academic journal Nature, the data offers new insight into how animal life – and ultimately humans – first came to roam the planet.

"Because animals evolved in the sea, most previous research has focussed on oceanic oxygen levels," explains Newcastle University's Dr Simon Poulton, one of the authors of the paper.

"Our research confirms for the first time that a rise in atmospheric oxygen was the driving force for oxygenation of the oceans 580 million years ago, and that this was the catalyst for the evolution of large complex animals."

The study

Distinctive chromium isotope signals occur when continental rocks are altered and weathered as a result of oxygen levels rising in the atmosphere.

The chromium released by this weathering is then washed into the seas and deposited in the deepest oceans - trapped in iron-rich rocks on the sea bed.

Using this new data, the research team has not only been able to establish the trigger for the evolution of animals, but have also demonstrated that oxygen began to pulse into the atmosphere earlier than previously thought.

"Oxygen levels actually began to rise 2.8 billion years ago" explains Dr Poulton.

"But instead of this rise being steady and gradual over time, what we saw in our data was a very unstable situation with short-lived episodes of free oxygen in the atmosphere early in Earth's history, followed by plummeting levels around 2 billion years ago.

"It was not until a second rise in atmospheric oxygen 580 million years ago that larger complex animals were able to get a foothold on the Earth."

Dr. Simon Poulton | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>