Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Catastrophic Drought Leads to Question: How Severe Can Climate Change Become?

25.02.2011
Extreme megadrought in Afro-Asian region likely had consequences for Paleolithic cultures

How severe can climate change become in a warming world?

Worse than anything we've seen in written history, according to results of a study appearing this week in the journal Science.

An international team of scientists led by Curt Stager of Paul Smith's College, New York, has compiled four dozen paleoclimate records from sediment cores in Lake Tanganyika and other locations in Africa.

The records show that one of the most widespread and intense droughts of the last 50,000 years or more struck Africa and Southern Asia 17,000 to 16,000 years ago.

Between 18,000 and 15,000 years ago, large amounts of ice and meltwater entered the North Atlantic Ocean, causing regional cooling but also major drought in the tropics, says Paul Filmer, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research along with NSF's Division of Atmospheric and Geospace Sciences and its Division of Ocean Sciences.

"The height of this time period coincided with one of the most extreme megadroughts of the last 50,000 years in the Afro-Asian monsoon region with potentially serious consequences for the Paleolithic humans that lived there at the time," says Filmer.

The "H1 megadrought," as it's known, was one of the most severe climate trials ever faced by anatomically modern humans.

Africa's Lake Victoria, now the world's largest tropical lake, dried out, as did Lake Tana in Ethiopia, and Lake Van in Turkey.

The Nile, Congo and other major rivers shriveled, and Asian summer monsoons weakened or failed from China to the Mediterranean, meaning the monsoon season carried little or no rainwater.

What caused the megadrought remains a mystery, but its timing suggests a link to Heinrich Event 1 (or "H1"), a massive surge of icebergs and meltwater into the North Atlantic at the close of the last ice age.

Previous studies had implicated southward drift of the tropical rain belt as a localized cause, but the broad geographic coverage in this study paints a more nuanced picture.

"If southward drift were the only cause," says Stager, lead author of the Science paper, "we'd have found evidence of wetting farther south. But the megadrought hit equatorial and southeastern Africa as well, so the rain belt didn't just move--it also weakened."

Climate models have yet to simulate the full scope of the event.

The lack of a complete explanation opens the question of whether an extreme megadrought could strike again as the world warms and de-ices further.

"There's much less ice left to collapse into the North Atlantic now," Stager says, "so I'd be surprised if it could all happen again--at least on such a huge scale."

Given what such a catastrophic megadrought could do to today's most densely populated regions of the globe, Stager hopes he's right.

Stager also holds an adjunct position at the Climate Change Institute, University of Maine, Orono.

Co-authors of the paper are David Ryves of Loughborough University in the United Kingdom; Brian Chase of the Institut des Sciences de l'Evolution de Montpellier in France and the Department of Archaeology, University of Bergen, Norway; and Francesco Pausata of the Geophysical Institute, University of Bergen, Norway.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>