Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are the Alps growing or shrinking?

09.11.2009
Correlation between mountain growth and climate

The Alps are growing just as quickly in height, as they are shrinking. This paradoxical result could be proven by a group of German and Swiss geoscientists. Due to glaciers and rivers about exactly the same amount of material is eroded from the Alp slopes as is regenerated from the deep Earth's crust.

The climatic cycles of the glacial period in Europe over the past 2.5 million years have accelerated this erosion process. In the latest volume of the science magazine "Tectonophysics" ( No. 474, S.236-249) the scientists prove that today's uplifting of the Alps is driven by these strong climatic variations.

The formation of the Alps through the collision of the two continents Africa and Europe began about approximately 55 million years ago. This led to the upthrusting of the highest European mountains, which probably already achieved its greatest height some millions of years ago. At present, however, the Swiss Alps are no longer growing as a result of this tectonic process.

Swiss geodesists, who have already been measuring the Alps with highest accuracy for decades, have observed, however, that the Alp summits, as compared to low land, rise up to one millimetre per year. Over millions of years a considerable height would have to result. But why then are the Alps not as high as the Himalayas? Researchers from the GFZ German Research Centre for Geosciences were able to calculate that mountains eroded concurrently at almost exactly the same speed.

"This mountain erosion cannot even be determined using the highly precise methods of modern geodesy" explains Professor Friedhelm v. Blanckenburg from the GFZ. "We use the rare isotope Beryllium-10, which develops in the land surface via cosmic radiation. The quicker a surface erodes, the fewer isotopes of this type are present therein". Therefore, von Blanckenburg, and the GFZ geoscientist, Dr. Hella Wittmann, have analysed this "cosmogenic" isotope in the sand of the Swiss Alps rivers and, thus, in the direct products of erosion.

How does it come about now that the Alps erode at the same speed that they rise? "Here pure upthrusting forces are at work. It is similar to an iceberg in the sea. If the top melts, the iceberg surfaces out of the water by almost the same share" explains von Blanckenburg. Thus this paradoxical situation with the Alps that through wind, water, glaciers and rock fall, they are being constantly finely eroded from the top but on the other hand, regenerated from the Earth's mantle. This phenomenon, even if already postulated theoretically has now been proven for a complete mountain range for the first time.

Thus, the Alps are constantly rising, although they have been deemed "dead" in a tectonic sense. Instead of plate forces it is the strong climatic variations since the beginning of the so-called quaternary glacial before approximately 2.5 million years, to which mountain slopes in particular have been reacting so sensitively. This holds the Alps in motion.

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>