Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alabama Researchers Get Close View of Winter Storm

31.01.2011
Who would have guessed that the perfect place to gather detailed scientific data from a powerful snowstorm would be in Alabama?

That turned out to be the case recently, however, as scientists at The University of Alabama in Huntsville and NASA's Earth Sciences Office used a network of mobile and on-site instruments -- many designed to study severe thunderstorms -- to get some of the most detailed measurements ever taken of a major snow storm in action.

The hometown storm that gave them this opportunity arrived only after UAHuntsville's severe weather team spent portions of the last two winters as part of a multi-organization research campaign, intercepting storms from Wisconsin to Columbia, S.C., (and storms with snow as far south as Paducah, Ky.) without getting the complete dataset they were seeking.

Another group of UAH scientists working with NASA recently collected data about snowstorms in Finland.

"This was much more economical and efficient," said Dr. Kevin Knupp, a professor of atmospheric science and the director of UAHuntsville's severe weather research. "We have all these instruments around here and we can deploy them at a moment's notice. We have the luxury of grabbing data on significant weather systems as they go through."

To help grab data on the Jan. 9-10 storm, the research team used university and NASA instruments at Cramer Research Hall, two lightning detector networks, an advanced dual polarization Doppler radar at Huntsville International Airport, and the National Weather Service Doppler radar at Hytop in Jackson County. Knupp also sent the university's mobile dual polarization Doppler radar unit to set up outside of New Market in northeastern Madison County.

"We are studying the storm's 'comma,' the area of small scale waves or instabilities near the end of a storm system," said Ryan Wade, a student in UAHuntsville's atmospheric science Ph.D. program, as he helped set up the radar in New Market. "Those instabilities can dump large amounts of snow over small areas. That's why you might have a storm that drops four inches of snow across a hundred miles, but eight inches in one place and a dusting in another.

What causes these waves isn't well studied or understood. This is a unique opportunity to study the comma part of this storm."

Learning more about what happens in the comma of a snowstorm was the plan. Then the storm got ... interesting.

The interesting things included thundersnow -- with one lightning flash stretching about 50 miles from the top of Monte Sano to just south of Moulton -- and almost a dozen gravity waves rippling westward from the top of Monte Sano, apparently triggering some of the heaviest snowfall in North Alabama records.

Lightning detection networks set up by NASA and UAHuntsville scientists detected seven lightning flashes during the snowstorm, including four that hit a broadcast tower on Monte Sano. The 50-mile-long flash hit just after 10:30 p.m., and included four cloud-to-ground strikes: Normal lightning detectors would have seen that single lightning bolt as four separate events.

Lightning occurs in snowstorms only under special conditions, which include the presence of updrafts. Ice particles carried aloft on these updrafts bump against each other, swapping electrons and building an electric charge.

But sustained updrafts are uncommon in snowstorms. That's where the gravity waves come in. A gravity wave is simply a wave in the atmosphere similar to waves in the water. Air is pushed up the front of the wave and falls down the back. These waves can start in a number of ways, such as a violent updraft in a thunderstorm or a sudden change in the jet stream.

Knupp says the 11 gravity waves that rippled across Huntsville and western Madison County and into eastern Limestone County the night of January 9 were caused by wind blowing out of the east bumping into and being pushed over Monte Sano after atmospheric conditions got right.

"The storm had almost continuous gravity waves, especially at the start. The first was about 9 p.m., just before the snow started," Knupp said, stopping to think. "That's interesting, too ... they started around the time the snow started. That might make sense."

In addition to providing the updrafts needed to trigger lightning, the waves also cause rapid cooling in clouds as ice and supercooled water in them are pushed upward. This might trigger heavy precipitation: One gravity wave went over minutes before a National Weather Service employee reported that one inch of snow fell in only 20 minutes.

The research team also found evidence of the storm waves they were looking for in the first place. "There were wave-like motions going on in different directions at different scales," said Knupp. "There were bands of snow coming from the southwest.

"At one point, between 9 a.m. and midnight, the Huntsville airport reported four inches of snowfall in one hour. That might happen in the Midwest, but not often. It will be very rare down here. I won't be surprised if that was caused by the interaction of one of these bands with a gravity wave."

Of course, one of the challenges with having a few dozen instruments gathering data on a weather event is finding resources to analyze the vast amount of data that is collected. For instance, one UAH radar unit operating on campus was pointed straight up so it could get a vertical profile of the passing storm's structure six times a second.

"We can't analyze everything. There's just too much," Knupp said. "It's frustrating but also good.”

Dr. Kevin Knupp, (256) 961-7762
kevin.knupp@nsstc.uah.edu
Ryan Wade, (256) 961-7847
For 'thundersnow' information:
Chris Schultz, (256) 961-7856
For NASA weather research:
Dr. Walt Petersen, (256) 961-7861

Dr. Kevin Knupp | Newswise Science News
Further information:
http://www.uah.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>